1
|
Badr-Eldin SM, Aldawsari HM, Kotta S, Elfaky MA. Augmentation of antifungal activity of fluconazole using a clove oil nanoemulgel formulation optimized by factorial randomized D-optimal design. 3 Biotech 2024; 14:270. [PMID: 39430772 PMCID: PMC11489362 DOI: 10.1007/s13205-024-04116-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 10/06/2024] [Indexed: 10/22/2024] Open
Abstract
In the present study, fluconazole (FLU) showed the highest solubility in clove oil and was selected as the oil phase for the FLU-loaded nanoemulsion (FLU-NE). Among the studied cosurfactants, Labrafac was better than ethanol at providing globules with acceptable sizes and a lower polydispersity index (PDI) when Tween 80 was the surfactant. This optimized FLU-NE was thermodynamically stable. Furthermore, FLU-NE stored at 40 ± 2 °C and 75 ± 5% relative humidity for 6 months demonstrated good stability. The FLU-NE was converted to a FLU-loaded nanoemulsion gel (FLU-NEG) using 2% w/v sodium carboxymethyl cellulose. The FLU-NEG was acceptable in terms of visual appearance and spreadability. Rheological studies revealed pseudoplastic behavior for FLU-NEG. The viscosity of FLU-NEG decreased when the applied rpm was increased. FLU-NEG showed greater drug release than that from a FLU-GEL formulation. Furthermore, the FLU release from FLU-NEG followed the Higuchi model. The results from the in vitro antifungal evaluation of FLU-NEG on Candida albicans ATCC 76615 strain confirmed the increase in the antifungal activity of FLU by clove oil. Significant differences were observed in the zones of inhibition produced by FLU-NEG compared to those produced by the blank nanoemulsion gel (B-NEG), fluconazole suspension (FLU-SUS), and nystatin samples. Thus, the increase in the antifungal activity of FLU using clove oil as the oil phase in its nanoemulsion formulation was quite evident from our results. Therefore, the developed FLU-NEG could be considered a potential candidate for further preclinical and clinical studies.
Collapse
Affiliation(s)
- Shaimaa M. Badr-Eldin
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Giza, 11562 Egypt
| | - Hibah Mubarak Aldawsari
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Sabna Kotta
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Mahmoud Abdelkhalek Elfaky
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| |
Collapse
|
2
|
Cui Z, Zhang M, Meng Q, Wu X, Li M. Preparation, in vitro and in vivo assessment of novel carvacrol@pro-phytomicelles for the treatment of Salmonella enteritidis infection in mice. Int J Pharm 2024; 667:124861. [PMID: 39461679 DOI: 10.1016/j.ijpharm.2024.124861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/14/2024] [Accepted: 10/20/2024] [Indexed: 10/29/2024]
Abstract
In livestock and poultry farming, the use of antibiotics has been abused, which seriously endangers human health. Thus, antibiotic alternatives are urgently needed. The phytochemical carvacrol (CAR) has attracted attention as an antibiotic alternative due to its excellent antibacterial activity and anti-inflammatory activity. However, CAR has high volatility and low water solubility, which seriously affect its antibacterial activity. In this study, two plant-derived small-molecule phytochemicals-glycyrrhizin and rebaudioside A-were selected as nanocarriers for the preparation of a novel solid pro-phytomicelle formulation named as CAR@PP. Using a simple fabrication method, the encapsulation efficiency of CAR reached 98.74 ± 1.14 %. CAR@PP was found to rapidly dissolve in water, resulting in a transparent solution (named as CAR@M) and a 59-fold increase in solubility compared to CAR. CAR@M contained uniform nanoparticles with a particle size, polydispersity index, and zeta potential of 3.52 ± 0.93 nm, 0.17 ± 0.01, and -10.63 ± 0.45 mV, respectively. The in vitro antibacterial activity of CAR@M was evaluated, and the minimum inhibitory concentration for the tested strains was 125-250 μg/ml. The antibacterial mechanisms were found that CAR@M disrupted the bacterial wall and biomembranes and efficiently inhibited bacterial biofilm growth. To the in vivo activity evaluation, treatment with 50 mg/kg CAR@M could effectively improve bacterial liver abscesses, decrease the inflammatory cytokine levels in the liver and cecum, and reduce the bacterial load in the liver and feces in Salmonella enteritidis-infected mice. In conclusion, CAR@PP is a promising alternative to antibiotics in livestock and poultry farming warranting further research.
Collapse
Affiliation(s)
- Zhengwei Cui
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | | | | | - Xianggen Wu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China.
| | - Mengshuang Li
- Qingdao Women and Children's Hospital, Qingdao, China.
| |
Collapse
|
3
|
Lou Y, Xu B, Huang K, Li X, Jin H, Ding L, Ning S, Chen X. Knockdown of miR-1293 attenuates lung adenocarcinoma angiogenesis via Spry4 upregulation-mediated ERK1/2 signaling inhibition. Biochem Pharmacol 2024; 226:116414. [PMID: 38972427 DOI: 10.1016/j.bcp.2024.116414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/21/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
Lung adenocarcinoma (LUAD) is the most common histologic subtype of lung cancer. Angiogenesis plays a pivotal role in LUAD progression via supplying oxygen and nutrients for cancer cells. Non-coding miR-1293, a significantly up-regulated miRNA in LUAD tissues, can be potentially used as a novel biomarker for predicting the prognosis of LUAD patients. However, little information is available about the function of miR-1293 in LUAD progression especially cancer-induced angiogenesis. Herein, we found that miR-1293 knockdown could obviously attenuate LUAD-induced angiogenesis in vitro and down-regulate two most important pro-angiogenic cytokines VEGF-A and bFGF expression and secretion. Indeed, miR-1293 abrogation inactivated the angiogenesis-promoting ERK1/2 signaling characterized by decreased ERK1/2 phosphorylation and translocation from nucleus to cytoplasm. Next we found that miR-1293 knockdown reactivated the endogenous ERK1/2 pathway inhibitor Spry4 expression and Spry4 perturbance with specific siRNA transfection abolished the inhibition of ERK1/2 pathway and LUAD-induced angiogenesis by miR-1293 knockdown. Finally, with in vivo assay, we found obvious Spry4 up-regulation and VEGF-A, bFGF, ERK1/2 phosphorylation, micro-vessel density marker CD31 expression down-regulation in vivo, respectively. Collectively, these results indicated that miR-1293 knockdown could significantly attenuate LUAD angiogenesis via Spry4-mediated ERK1/2 signaling inhibition, which might be helpful for uncovering more functions of miR-1293 in LUAD and providing experimental basis for possible LUAD therapeutic strategy targeting miR-1293.
Collapse
Affiliation(s)
- Yang Lou
- Department of Cardiothoracic Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, Zhejiang Province, China
| | - Bo Xu
- Department of Cardiothoracic Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, Zhejiang Province, China
| | - Kan Huang
- Department of Cardiothoracic Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, Zhejiang Province, China
| | - Xianshuai Li
- Department of Cardiothoracic Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, Zhejiang Province, China
| | - Huixian Jin
- Department of Clinical Nutrition, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, Zhejiang Province, China
| | - Linchao Ding
- Department of Scientific Research, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, Zhejiang Province, China
| | - Shilong Ning
- Department of Clinical Nutrition, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, Zhejiang Province, China.
| | - Xianguo Chen
- Department of Cardiothoracic Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, Zhejiang Province, China.
| |
Collapse
|
4
|
Hou H, Li Y, Tang W, Gao D, Liu Z, Zhao F, Gao X, Ling P, Wang F, Sun F, Tan H. Chondroitin sulfate-based universal nanoparticle delivers angiogenic inhibitor and paclitaxel to exhibit a combination of chemotherapy and anti-angiogenic therapy. Int J Biol Macromol 2024; 271:132520. [PMID: 38772463 DOI: 10.1016/j.ijbiomac.2024.132520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/23/2024] [Accepted: 05/17/2024] [Indexed: 05/23/2024]
Abstract
Blocking the tumor nutrient supply through angiogenic inhibitors is an effective treatment approach for malignant tumors. However, using angiogenic inhibitors alone may not be enough to achieve a significant tumor response. Therefore, we recently designed a universal drug delivery system combining chemotherapy and anti-angiogenic therapy to target tumor cells while minimizing drug-related side effects. This system (termed as PCCE) is composed of biomaterial chondroitin sulfate (CS), the anti-angiogenic peptide ES2, and paclitaxel (PTX), which collectively enhance antitumor properties. Interestingly, the PCCE system is conferred exceptional cell membrane permeability due to inherent characteristics of CS, including CD44 receptor-mediated endocytosis. The PCCE could respond to the acidic and high glutathione conditions, thereby releasing PTX and ES2. PCCE could effectively inhibit the proliferation, migration, and invasion of tumor cells and cause apoptosis, while PCCE can affect the endothelial cells tube formation and exert anti-angiogenic function. Consistently, more potent in vivo antitumor efficacy and non-toxic sides were demonstrated in B16F10 xenograft mouse models. PCCE can achieve excellent antitumor activity via modulating angiogenic and apoptosis-related factors. In summary, we have successfully developed an intelligent and responsive CS-based nanocarrier known as PCCE for delivering various antitumor drugs, offering a promising strategy for treating malignant tumors.
Collapse
Affiliation(s)
- Huiwen Hou
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, China
| | - Yan Li
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, China
| | - Wen Tang
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, China
| | - Didi Gao
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, China
| | - Zengmei Liu
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, China
| | - Feiyan Zhao
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, China
| | - Xinqing Gao
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, China
| | - Peixue Ling
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, China; School of Pharmaceutical sciences, Shandong University, Jinan 250012, China
| | - Fengshan Wang
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, China; School of Pharmaceutical sciences, Shandong University, Jinan 250012, China
| | - Feng Sun
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, China.
| | - Haining Tan
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, China; School of Pharmaceutical sciences, Shandong University, Jinan 250012, China.
| |
Collapse
|
5
|
Mathur A, Meena A, Luqman S. Monoterpenoids: An upcoming class of therapeutic agents for modulating cancer metastasis. Phytother Res 2024; 38:939-969. [PMID: 38102850 DOI: 10.1002/ptr.8081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/28/2023] [Accepted: 11/14/2023] [Indexed: 12/17/2023]
Abstract
Monoterpenoids, a sub-class of terpenoids, are secondary metabolites frequently extracted from the essential oils of aromatic plants. Their antitumor properties including antiproliferative, apoptotic, antiangiogenic, and antimetastatic effects along with other biological activities have been the subject of extensive study due to their diverse characteristics. In recent years, numerous investigations have been conducted to understand its potential anticancer impacts, specifically focusing on antiproliferative and apoptotic mechanisms. Metastasis, a malignancy hallmark, can exert either protective or destructive influences on tumor cells. Despite this, the potential antimetastatic and antiangiogenic attributes of monoterpenoids need further exploration. This review focuses on specific monoterpenoids, examining their effects on metastasis and relevant signaling pathways. The monoterpenoids exhibit a high level of complexity as natural products that regulate metastatic proteins through various signaling pathways, including phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin, mitogen-activated protein kinase/extracellular signal-regulated kinase/jun N-terminal kinase, nuclear factor kappa B, vascular endothelial growth factor, and epithelial mesenchymal transition process. Additionally, this review delves into the biosynthesis and classification of monoterpenoids, their potential antitumor impacts on cell lines, the plant sources of monoterpenoids, and the current status of limited clinical trials investigating their efficacy against cancer. Moreover, monoterpenoids depict promising potential in preventing cancer metastasis, however, inadequate clinical trials limit their drug usage. State-of-the-art techniques and technologies are being employed to overcome the challenges of utilizing monoterpenoids as an anticancer agent.
Collapse
Affiliation(s)
- Anurag Mathur
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Abha Meena
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Suaib Luqman
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
6
|
Huang Q, Yang Z, Tao X, Ma C, Cao P, Wei P, Jiang C, Ren H, Li X. Sprayable chitosan nanogel with nitric oxide to accelerate diabetic wound healing through bacteria inhibition, biofilm eradication and macrophage polarization. Int J Biol Macromol 2024; 254:127806. [PMID: 37918593 DOI: 10.1016/j.ijbiomac.2023.127806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/18/2023] [Accepted: 10/29/2023] [Indexed: 11/04/2023]
Abstract
Bacterial infection and chronic inflammation are two major risks in diabetic wound healing, which increase patient mortality. In this study, a multifunctional sprayable nanogel (Ag-G@CS) based on chitosan has been developed to synergistically inhibit bacterial infection, eradicate biofilm, and relieve inflammation of diabetic wounds. The nanogel is successfully crafted by encapsulating with a nitric oxide (NO) donor and performing in-situ reduction of silver nanoparticles (Ag). The released NO enhances the antibacterial efficacy of Ag, nearly achieving complete eradication of biofilms in vitro. Upon application on both normal or diabetic chronic wounds, the combination effects of released NO and Ag offer a notable antibacterial effect. Furthermore, after bacteria inhibition and biofilm eradication, the NO released by the nanogel orchestrates a transformation of M1 macrophages into M2 macrophages, significantly reducing tumor necrosis factor α (TNF-α) release and relieving inflammation. Remarkably, the released NO also promotes M2a to M2c macrophages, thereby facilitating tissue remodeling in chronic wounds. More importantly, it upregulates the expression of vascular endothelial growth factor (VEGF), further accelerating the wound healing process. Collectively, the formed sprayable nanogel exhibits excellent inhibition of bacterial infections and biofilms, and promotes chronic wound healing via inflammation resolution, which has excellent potential for clinical use in the future.
Collapse
Affiliation(s)
- Qinqin Huang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Zheng Yang
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing 211816, China
| | - Xinyue Tao
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing 211816, China
| | - Chenyu Ma
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing 211816, China
| | - Peiyao Cao
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing 211816, China
| | - Ping Wei
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Chenxiao Jiang
- Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, China
| | - Hao Ren
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing 211816, China.
| | - Xueming Li
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
7
|
de Souza RL, Opretzka LCF, de Morais MC, Melo CDO, de Oliveira BEG, de Sousa DP, Villarreal CF, Oliveira EE. Nanoemulsion Improves the Anti-Inflammatory Effect of Intraperitoneal and Oral Administration of Carvacryl Acetate. Pharmaceuticals (Basel) 2023; 17:17. [PMID: 38276002 PMCID: PMC10821396 DOI: 10.3390/ph17010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/05/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024] Open
Abstract
Carvacryl acetate (CA) is a monoterpene obtained from carvacrol, which exhibits anti-inflammatory activity. However, its low solubility in aqueous media limits its application and bioavailability. Herein, we aimed to develop a carvacryl acetate nanoemulsion (CANE) and assess its anti-inflammatory potential in preclinical trials. The optimized nanoemulsion was produced by ultrasound, and stability parameters were characterized for 90 days using dynamic light scattering after hydrophilic-lipophilic balance (HLB) assessment. To evaluate anti-inflammatory activity, a complete Freund's adjuvant-induced inflammation model was established. Paw edema was measured, and local interleukin (IL)-1β levels were quantified using ELISA. Toxicity was assessed based on behavioral changes and biochemical assays. The optimized nanoemulsion contained 3% CA, 9% surfactants (HLB 9), and 88% water and exhibited good stability over 90 days, with no signs of toxicity. The release study revealed that CANE followed zero-order kinetics. Dose-response curves for CA were generated for intraperitoneal and oral administration, demonstrating anti-inflammatory effects by both routes; however, efficacy was lower when administered orally. Furthermore, CANE showed improved anti-inflammatory activity when compared with free oil, particularly when administered orally. Moreover, daily treatment with CANE did not induce behavioral or biochemical alterations. Overall, these findings indicate that nanoemulsification can enhance the anti-inflammatory properties of CA by oral administration.
Collapse
Affiliation(s)
- Rafael Limongi de Souza
- Laboratory of Synthesis and Drug Delivery, State University of Paraíba, Rua Horácio Trajano, SN, João Pessoa 58071-160, PB, Brazil
| | - Luíza Carolina França Opretzka
- Laboratório de Farmacologia e Terapêutica Experimental, Faculdade de Farmácia, Universidade Federal da Bahia, Rua Barão de Jeremoabo, 147, Ondina, Salvador 40170-115, BA, Brazil (C.F.V.)
| | - Mayara Castro de Morais
- Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa 58051-970, PB, Brazil (D.P.d.S.)
| | - Camila de Oliveira Melo
- Laboratory of Synthesis and Drug Delivery, State University of Paraíba, Rua Horácio Trajano, SN, João Pessoa 58071-160, PB, Brazil
| | | | - Damião Pergentino de Sousa
- Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa 58051-970, PB, Brazil (D.P.d.S.)
| | - Cristiane Flora Villarreal
- Laboratório de Farmacologia e Terapêutica Experimental, Faculdade de Farmácia, Universidade Federal da Bahia, Rua Barão de Jeremoabo, 147, Ondina, Salvador 40170-115, BA, Brazil (C.F.V.)
| | - Elquio Eleamen Oliveira
- Laboratory of Synthesis and Drug Delivery, State University of Paraíba, Rua Horácio Trajano, SN, João Pessoa 58071-160, PB, Brazil
| |
Collapse
|
8
|
Memarzia A, Saadat S, Asgharzadeh F, Behrouz S, Folkerts G, Boskabady MH. Therapeutic effects of medicinal plants and their constituents on lung cancer, in vitro, in vivo and clinical evidence. J Cell Mol Med 2023; 27:2841-2863. [PMID: 37697969 PMCID: PMC10538270 DOI: 10.1111/jcmm.17936] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 08/07/2023] [Accepted: 08/18/2023] [Indexed: 09/13/2023] Open
Abstract
The most common type of cancer in the world is lung cancer. Traditional treatments have an important role in cancer therapy. In the present review, the most recent findings on the effects of medicinal plants and their constituents or natural products (NP) in treating lung cancer are discussed. Empirical studies until the end of March 2022 were searched using the appropriate keywords through the databases PubMed, Science Direct and Scopus. The extracts and essential oils tested were all shown to effect lung cancer by several mechanisms including decreased tumour weight and volume, cell viability and modulation of cytokine. Some plant constituents increased expression of apoptotic proteins, the proportion of cells in the G2/M phase and subG0/G1 phase, and Cyt c levels. Also, natural products (NP) activate apoptotic pathways in lung cancer cell including p-JNK, Akt/mTOR, PI3/ AKT\ and Bax, Bcl2, but suppressed AXL phosphorylation. Plant-derived substances altered the cell morphology, reduced cell migration and metastasis, oxidative marker production, p-eIF2α and GRP78, IgG, IgM levels and reduced leukocyte counts, LDH, GGT, 5'NT and carcinoembryonic antigen (CEA). Therefore, medicinal plant extracts and their constituents could have promising therapeutic value for lung cancer, especially if used in combination with ordinary anti-cancer drugs.
Collapse
Affiliation(s)
- Arghavan Memarzia
- Applied Biomedical Research CenterMashhad University of Medical SciencesMashhadIran
- Department of Physiology, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Saeideh Saadat
- Applied Biomedical Research CenterMashhad University of Medical SciencesMashhadIran
- Department of Physiology, School of MedicineZahedan University of Medical SciencesZahedanIran
| | - Fereshteh Asgharzadeh
- Department of Physiology, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Sepide Behrouz
- Department of Animal Science, Faculty of AgricultureUniversity of BirjandBirjandIran
| | - Gert Folkerts
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of ScienceUtrecht UniversityUtrechtNetherlands
| | - Mohammad Hossein Boskabady
- Applied Biomedical Research CenterMashhad University of Medical SciencesMashhadIran
- Department of Physiology, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
9
|
Avram Ș, Bora L, Vlaia LL, Muț AM, Olteanu GE, Olariu I, Magyari-Pavel IZ, Minda D, Diaconeasa Z, Sfirloaga P, Adnan M, Dehelean CA, Danciu C. Cutaneous Polymeric-Micelles-Based Hydrogel Containing Origanum vulgare L. Essential Oil: In Vitro Release and Permeation, Angiogenesis, and Safety Profile In Ovo. Pharmaceuticals (Basel) 2023; 16:940. [PMID: 37513852 PMCID: PMC10383657 DOI: 10.3390/ph16070940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/22/2023] [Accepted: 06/25/2023] [Indexed: 07/30/2023] Open
Abstract
Origanum vulgare var. vulgare essential oil (OEO) is known as a natural product with multiple beneficial effects with application in dermatology. Oregano essential oil represents a potential natural therapeutic alternative for fibroepithelial polyps (FPs), commonly known as skin tags. Innovative formulations have been developed to improve the bioavailability and stability of essential oils. In this study, we aimed to evaluate the morphology of a polymeric-micelles-based hydrogel (OEO-PbH), the release and permeation profile of oregano essential oil, as well as to assess in vivo the potential effects on the degree of biocompatibility and the impact on angiogenesis in ovo, using a chick chorioallantoic membrane (CAM). Scanning electron microscopy (SEM) analysis indicated a regular aspect after the encapsulation process, while in vitro release studies showed a sustained release of the essential oil. None of the tested samples induced any irritation on the CAM and the limitation of the angiogenic process was noted. OEO-PbH, with a sustained release of OEO, potentially enhances the anti-angiogenic effect while being well tolerated and non-irritative by the vascularized CAM, especially on the blood vessels (BVs) in the presence of leptin treatment. This is the first evidence of in vivo antiangiogenic effects of a polymeric-micelle-loaded oregano essential oil, with further mechanistic insights for OEO-PbH formulation, involving leptin as a possible target. The findings suggest that the OEO-containing polymeric micelle hydrogel represents a potential future approach in the pathology of cutaneous FP and other angiogenesis-related conditions.
Collapse
Affiliation(s)
- Ștefana Avram
- Department of Pharmacognosy, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluation, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Larisa Bora
- Department of Pharmacognosy, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluation, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Lavinia Lia Vlaia
- Department II-Pharmaceutical Technology, Formulation and Technology of Drugs Research Center, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Ana Maria Muț
- Department II-Pharmaceutical Technology, Formulation and Technology of Drugs Research Center, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Gheorghe-Emilian Olteanu
- Research Center for Pharmaco-Toxicological Evaluation, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
- Center for Research and Innovation in Personalized Medicine of Respiratory Diseases, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
- Department of Toxicology and Drug Industry, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Ioana Olariu
- Department II-Pharmaceutical Technology, Formulation and Technology of Drugs Research Center, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Ioana Zinuca Magyari-Pavel
- Department of Pharmacognosy, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluation, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Daliana Minda
- Department of Pharmacognosy, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluation, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Zorița Diaconeasa
- Department of Food Science and Technology, Faculty of Food Science and Technology, University of Agricultural Science and Veterinary Medicine, Calea Manastur, 3-5, 400372 Cluj-Napoca, Romania
| | - Paula Sfirloaga
- National Institute for Research and Development in Electrochemistry and Condensed Matter, 300569 Timisoara, Romania
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia
| | - Cristina Adriana Dehelean
- Research Center for Pharmaco-Toxicological Evaluation, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
- Department of Toxicology and Drug Industry, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Corina Danciu
- Department of Pharmacognosy, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluation, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| |
Collapse
|
10
|
Cardoso LT, Alexandre B, Cacciatore FA, Magedans YVDS, Fett-Neto AG, Contri RV, Malheiros PDS. Carvacrol-loaded nanoemulsions produced with a natural emulsifier for lettuce sanitization. Food Res Int 2023; 168:112748. [PMID: 37120202 DOI: 10.1016/j.foodres.2023.112748] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 04/01/2023]
Abstract
Carvacrol is an antimicrobial agent that shows potential for eliminating microorganisms in vegetables, increasing food safety. However, intense odor and low water solubility of carvacrol are limiting factors for its application for fresh vegetables sanitization, which can be overcome by nanotechnology. Two different nanoemulsions containing carvacrol (11 mg/mL) were developed by probe sonication: carvacrol-saponin nanoemulsion (CNS) and carvacrol-polysorbate 80 nanoemulsion (CNP). Formulations presented appropriate droplet sizes (from 74.7 nm to 168.2 nm) and high carvacrol encapsulation efficiency (EE) (from 89.5 % to 91.5 %). CNS showed adequate droplet size distribution (PDI < 0.22) and high zeta potential values (around -30 mV) compared to CNP, with saponin chosen for the following experiments. Carvacrol nanoemulsions presented Bacterial Inactivation Concentration (BIC) against the Salmonella cocktail from 5.51 to 0.69 mg/mL and for the E. coli cocktail from 1.84 to 0.69 mg/mL. Among all tested nanoemulsions, CNS1 presented the lowest BIC (0.69 mg/mL) against both bacterial cocktails. Damage to bacterial cells in lettuce treated with nanoemulsion was confirmed by scanning electron microscopy. For lettuce sanitization, CNS1 showed a similar effect to unencapsulated carvacrol, with a high bacterial reduction (>3 log CFU/g) after lettuce immersion for 15 min at 2 × BIC. Using the same immersion time, the CNS1 (2 × BIC) demonstrated equal or better efficacy in reducing both tested bacterial cocktails (>3 log CFU/g) when compared to acetic acid (6.25 mg/mL), citric acid (25 mg/mL), and sodium hypochlorite solution (150 ppm). Lettuce immersed in CNS1 at both concentrations (BIC and 2 × BIC) did not change the color and texture of leaves, while the unencapsulated carvacrol at 2 × BIC darkened them and reduced their firmness. Consequently, carvacrol-saponin nanoemulsion (CNS1) proved to be a potential sanitizer for lettuce.
Collapse
Affiliation(s)
- Louise Thomé Cardoso
- Laboratório de Microbiologia e Higiene dos Alimentos, Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul (UFRGS), Brazil
| | - Bibiana Alexandre
- Laboratório de Microbiologia e Higiene dos Alimentos, Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul (UFRGS), Brazil
| | - Fabiola Ayres Cacciatore
- Laboratório de Microbiologia e Higiene dos Alimentos, Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul (UFRGS), Brazil
| | - Yve Verônica da Silva Magedans
- Laboratório de Fisiologia Vegetal, Centro de Biotecnologia e Instituto de Biociências (Departamento de Botânica), Universidade Federal do Rio Grande do Sul (UFRGS), Brazil
| | - Arthur Germano Fett-Neto
- Laboratório de Fisiologia Vegetal, Centro de Biotecnologia e Instituto de Biociências (Departamento de Botânica), Universidade Federal do Rio Grande do Sul (UFRGS), Brazil
| | - Renata Vidor Contri
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Brazil
| | - Patrícia da Silva Malheiros
- Laboratório de Microbiologia e Higiene dos Alimentos, Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul (UFRGS), Brazil.
| |
Collapse
|
11
|
Farto-Vaamonde X, Diaz-Gomez L, Parga A, Otero A, Concheiro A, Alvarez-Lorenzo C. Perimeter and carvacrol-loading regulate angiogenesis and biofilm growth in 3D printed PLA scaffolds. J Control Release 2022; 352:776-792. [PMID: 36336096 DOI: 10.1016/j.jconrel.2022.10.060] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/07/2022] [Accepted: 10/30/2022] [Indexed: 11/13/2022]
Abstract
Carvacrol is a natural low-cost compound derived from oregano which presents anti-bacterial properties against both Gram-positive and Gram-negative bacteria. In this work, carvacrol-loaded PLA scaffolds were fabricated by 3D printing as platforms to support bone tissue regeneration while preventing biofilm development. Scaffolds were printed with or without a perimeter (lateral wall) mimicking the cortical structure of bone tissue to further evaluate if the lateral interconnectivity could affect the biological or antimicrobial properties of the scaffolds. Carvacrol incorporation was performed by loading either the PLA filament prior to 3D printing or the already printed PLA scaffold. The loading method determined carvacrol localization in the scaffolds and its release profile. Biphasic profiles were recorded in all cases, but scaffolds loaded post-printed released carvacrol much faster, with 50-80% released in the first day, compared to those containing carvacrol in PLA filament before printing which sustained the release for several weeks. The presence or absence of the perimeter did not affect the release rate, but total amount released. Tissue integration and vascularization of carvacrol-loaded scaffolds were evaluated in a chorioallantoic membrane model (CAM) using a novel quantitative micro-computed tomography (micro-CT) analysis approach. The obtained results confirmed the CAM tissue ingrowth and new vessel formation within the porous structure of the scaffolds after 7 days of incubation, without leading to hemorrhagic or cytotoxic effects. The absence of lateral wall facilitated lateral integration of the scaffolds in the host tissue, although increased the anisotropy of the mechanical properties. Scaffolds loaded with carvacrol post-printing showed antibiofilm activity against Staphylococcus aureus and Pseudomonas aeruginosa as observed in a decrease in CFU counting after biofilm detachment, changes in metabolic heat measured by calorimetry, and increased contact killing efficiency. In summary, this work demonstrated the feasibility of tuning carvacrol release rate and the amount released from PLA scaffolds to achieve antibiofilm protection without altering angiogenesis, which was mostly dependent on the perimeter density of the scaffolds.
Collapse
Affiliation(s)
- Xián Farto-Vaamonde
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma Group (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS), and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Luis Diaz-Gomez
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma Group (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS), and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Ana Parga
- Departamento de Microbiología y Parasitología, Facultad de Biología, Edificio CiBUS, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Ana Otero
- Departamento de Microbiología y Parasitología, Facultad de Biología, Edificio CiBUS, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Angel Concheiro
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma Group (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS), and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma Group (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS), and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
12
|
Xiao M, Shi Y, Jiang S, Cao M, Chen W, Xu Y, Xu Z, Wang K. Recent advances of nanomaterial-based anti-angiogenic therapy in tumor vascular normalization and immunotherapy. Front Oncol 2022; 12:1039378. [DOI: 10.3389/fonc.2022.1039378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/14/2022] [Indexed: 12/03/2022] Open
Abstract
Anti-angiogenesis therapy and immunotherapy are the first-line therapeutic strategies for various tumor treatments in the clinic, bringing significant advantages for tumor patients. Recent studies have shown that anti-angiogenic therapy can potentiate immunotherapy, with many clinical trials conducted based on the combination of anti-angiogenic agents and immune checkpoint inhibitors (ICIs). However, currently available clinical dosing strategies and tools are limited, emphasizing the need for more improvements. Although significant progress has been achieved, several big questions remained, such as how to achieve cell-specific targeting in the tumor microenvironment? How to improve drug delivery efficiency in tumors? Can nanotechnology be used to potentiate existing clinical drugs and achieve synergistic sensitization effects? Over the recent few years, nanomedicines have shown unique advantages in antitumor research, including cell-specific targeting, improved delivery potentiation, and photothermal effects. Given that the applications of nanomaterials in tumor immunotherapy have been widely reported, this review provides a comprehensive overview of research advances on nanomaterials in anti-angiogenesis therapy, mainly focusing on the immunosuppressive effects of abnormal tumor vessels in the tumor immune microenvironment, the targets and strategies of anti-angiogenesis nanomedicines, and the potential synergistic effects and molecular mechanisms of anti-angiogenic nanomedicines in combination with immunotherapy, ultimately providing new perspectives on the nanomedicine-based synergy between anti-angiogenic and immunotherapy.
Collapse
|
13
|
Imran M, Aslam M, Alsagaby SA, Saeed F, Ahmad I, Afzaal M, Arshad MU, Abdelgawad MA, El‐Ghorab AH, Khames A, Shariati MA, Ahmad A, Hussain M, Imran A, Islam S. Therapeutic application of carvacrol: A comprehensive review. Food Sci Nutr 2022; 10:3544-3561. [PMID: 36348778 PMCID: PMC9632228 DOI: 10.1002/fsn3.2994] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Carvacrol is a major natural constituent and is significantly present as an essential oil in aromatic plants and is well known for its numerous biological activities. Therapeutic properties of carvacrol have been demonstrated as anti-oxidant, anticancer, diabetes prevention, cardioprotective, anti-obesity, hepatoprotective and reproductive role, antiaging, antimicrobial, and immunomodulatory properties. The carvacrol biosynthesis has been mediated through mevalonate pathway. Carvacrol has the anticancer ability against malignant cells via decreasing the expressions of matrix metalloprotease 2 and 9, inducing apoptosis, enhancing the expression of pro-apoptotic proteins, disrupting mitochondrial membrane, suppressing extracellular signal-regulated kinase 1/2 mitogen-activated protein kinase signal transduction, and also decreasing the phosphoinositide 3-kinase/protein kinase B. It also decreased the concentrations of alanine aminotransferase, alkaline phosphatase and aspartate aminotransferase, and gamma-glutamyl transpeptidase as well as also restored liver function, insulin level, and plasma glucose level. Carvacrol also has been found to exert antimicrobial activity against Staphylococcus aureus, Pseudomonas aeruginosa, Coagulase-negative staphylococcus, Salmonella spp., Enterococcus sp. Shigella, and Escherichia coli. The current review article summarizes the health-promoting perspectives of carvacrol through various pathways.
Collapse
Affiliation(s)
- Muhammad Imran
- Department of Food Science and TechnologyUniversity of NarowalNarowalPakistan
| | - Mahwish Aslam
- Faculty of Allied Health Sciences, University Institute of Diet and Nutritional SciencesThe University of LahoreLahorePakistan
| | - Suliman A. Alsagaby
- Department of Medical Laboratory Sciences, College of Applied Medical SciencesMajmaah UniversityMajmaahSaudi Arabia
| | - Farhan Saeed
- Department of Food Science and TechnologyGovernment College UniversityFaisalabadPakistan
| | - Ishtiaque Ahmad
- Department of Dairy Technology, FAPTUniversity of Veterinary & Animal SciencesLahorePakistan
| | - Muhamamd Afzaal
- Department of Food Science and TechnologyGovernment College UniversityFaisalabadPakistan
| | - Muhammad Umair Arshad
- Department of Food Science and TechnologyGovernment College UniversityFaisalabadPakistan
| | - Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of PharmacyJouf UniversitySakakaSaudi Arabia
| | - Ahmed H. El‐Ghorab
- Department of Chemistry, College of ScienceJouf UniversitySakakaSaudi Arabia
| | - Ahmed Khames
- Department of Pharmaceutics and Industrial Pharmacy, College of PharmacyTaif UniversityTaifSaudi Arabia
| | - Mohammad Ali Shariati
- K.G. Razumovsky Moscow State University of Technologies and Management (The First Cossack University)MoscowRussian Federation
| | - Arslan Ahmad
- Department of Food Science and TechnologyGovernment College UniversityFaisalabadPakistan
| | - Muzamal Hussain
- Department of Food Science and TechnologyGovernment College UniversityFaisalabadPakistan
| | - Ali Imran
- Department of Food Science and TechnologyGovernment College UniversityFaisalabadPakistan
| | - Saiful Islam
- Institute of Nutrition and Food ScienceUniversity of DhakaDhakaBangladesh
| |
Collapse
|
14
|
Souza RLD, Dantas AGB, Melo CDO, Felício IM, Oliveira EE. Nanotechnology as a tool to improve the biological activity of carvacrol: A review. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Yu Y, Qiao W, Feng S, Yi C, Liu Z. Inhibition of Walker-256 Tumor Growth by Combining Microbubble-Enhanced Ultrasound and Endostar. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2022; 41:2591-2600. [PMID: 35106800 DOI: 10.1002/jum.15949] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/14/2021] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
OBJECTIVES This research is to investigate the anti-tumor effects by combining anti-vascular effect of microbubble enhanced ultrasound (MEUS) mechanical destruction and anti-angiogenic effect of Endostar. METHODS Rats bearing Walker-256 tumor were randomly divided into 4 groups treated by Endostar + MEUS combination, Endostar, MEUS or Sham ultrasound (US), respectively. MEUS was induced by Sonazoid microbubble and a focused therapeutic US device. Contrast-enhanced ultrasound (CEUS) was used to assess tumor perfusion before and after treatment. Microvessel density (MVD) was evaluated with immunohistochemical staining of CD31, CD34, and VEGFA. TUNEL assay was used to determine the apoptosis rate of tumor cells. RESULTS Endostar + MEUS combined group induced the most reduced blood perfusion and most retarded tumor growth compared with other 3 groups. Decreased MVD was shown in Endostar + MEUS, Endostar and MEUS group, but the lowest MVD value was presented in the combined treatment group. Significant increase was observed in the combined therapy group and MEUS group. CONCLUSIONS This study showed an improved anti-vascular and anti-angiogenic effect achieved by combining Endostar and MEUS, and may provide a new method potential for anti-tumor therapy.
Collapse
Affiliation(s)
- Yanlan Yu
- Department of Ultrasound, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Wei Qiao
- Department of Ultrasound, General Hospital of Central Theatre Commander Theater, Wuhan, China
| | - Shuang Feng
- Department of Ultrasound, General Hospital of Southern Theatre Command, Guangzhou, China
| | - Cuo Yi
- Department of Ultrasound, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Zheng Liu
- Department of Ultrasound, Xinqiao Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
16
|
Silva BIM, Nascimento EA, Silva CJ, Silva TG, Aguiar JS. Anticancer activity of monoterpenes: a systematic review. Mol Biol Rep 2021; 48:5775-5785. [PMID: 34304392 DOI: 10.1007/s11033-021-06578-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/15/2021] [Indexed: 01/06/2023]
Abstract
Secondary metabolites have been recognized for centuries as medicinal agents, in particular monoterpenes which have been the target of research in the discovery of antineoplastic drugs, as they have potential antitumor effect and low toxicity and are used as additives in foods and cosmetics. Another advantage of monoterpenes is structural diversity, which gives greater plasticity when interacting with cells. The purpose of this review was to summarize and critically discuss the anticancer potential of monoterpenes and their respective mechanisms of action. A systematic review of articles in the MEDLINE/PubMed, Web of Science, Scopus and Science Direct electronic databases was independently conducted by three reviewers using the combination of the following keywords: monoterpenes AND anticancer AND in vitro. Restriction in selecting articles followed pre-established inclusion and exclusion criteria by the reviewers, and also a time limitation with works published between 2015 and 2019 being selected. In total, 39 works were deemed eligible for inclusion in the final review. Monoterpenes have cytotoxic activity in a wide variety of tumor cell lines, and mainly appear to exert this effect by inducing apoptosis caused by oxidative stress. In addition, improved use of monoterpenes when used in drug delivery systems and the synergistic effect with conventional chemotherapeutic drugs are reported. These findings validate this class of compounds as a promising source of chemotherapeutic drugs yet to be explored.
Collapse
Affiliation(s)
- Bruno I M Silva
- Department of Antibiotics, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Erika A Nascimento
- Department of Antibiotics, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Cleber J Silva
- Department of Antibiotics, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Teresinha G Silva
- Department of Antibiotics, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Jaciana S Aguiar
- Department of Antibiotics, Federal University of Pernambuco, Recife, Pernambuco, Brazil.
| |
Collapse
|
17
|
Pontes-Quero GM, Esteban-Rubio S, Pérez Cano J, Aguilar MR, Vázquez-Lasa B. Oregano Essential Oil Micro- and Nanoencapsulation With Bioactive Properties for Biotechnological and Biomedical Applications. Front Bioeng Biotechnol 2021; 9:703684. [PMID: 34368098 PMCID: PMC8340037 DOI: 10.3389/fbioe.2021.703684] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/21/2021] [Indexed: 11/13/2022] Open
Abstract
Due to the preservative, antioxidant, antimicrobial, and therapeutic properties of oregano essential oil (OEO), it has received an emerging interest for biotechnological and biomedical applications. However, stability and bioactivity can be compromised by its natural volatile and hydrophobic nature, and by external factors including light, heat, or oxygen. Therefore, micro- and nanoencapsulation are being employed to guarantee oregano oil protection from outside aggressions and to maximize its potential. Oregano oil encapsulation is an interesting strategy used to increase its stability, enhance its bioactivity, and decrease its volatility. At the same time, the versatility that micro- and nanocarriers offer, allows to prepare tailored systems that can provide a controlled and targeted release of the encapsulated principle, influence its bioactive activities, or even provide additional properties. Most common materials used to prepare these carriers are based on lipids and cyclodextrins, due to their hydrophobic nature, polymers due to their versatility in composition, and hybrid lipid-polymer systems. In this context, recently developed micro- and nanocarriers encapsulating oregano oil with applications in the biotechnological and biomedical fields will be discussed.
Collapse
Affiliation(s)
- Gloria María Pontes-Quero
- Group of Biomaterials, Department of Polymeric Nanomaterials and Biomaterials, Institute of Polymer Science and Technology, ICTP-CSIC, Madrid, Spain.,Alodia Farmacéutica SL, Santiago Grisolía 2 D130/L145, Madrid, Spain.,Networking Biomedical Research Centre in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Madrid, Spain
| | | | - Juan Pérez Cano
- Alodia Farmacéutica SL, Santiago Grisolía 2 D130/L145, Madrid, Spain
| | - María Rosa Aguilar
- Group of Biomaterials, Department of Polymeric Nanomaterials and Biomaterials, Institute of Polymer Science and Technology, ICTP-CSIC, Madrid, Spain.,Networking Biomedical Research Centre in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Madrid, Spain
| | - Blanca Vázquez-Lasa
- Group of Biomaterials, Department of Polymeric Nanomaterials and Biomaterials, Institute of Polymer Science and Technology, ICTP-CSIC, Madrid, Spain.,Networking Biomedical Research Centre in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Madrid, Spain
| |
Collapse
|
18
|
Development, Characterization, and Immunomodulatory Evaluation of Carvacrol-loaded Nanoemulsion. Molecules 2021; 26:molecules26133899. [PMID: 34202367 PMCID: PMC8271444 DOI: 10.3390/molecules26133899] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/05/2021] [Accepted: 06/16/2021] [Indexed: 01/12/2023] Open
Abstract
Carvacrol (CV) is an essential oil with numerous therapeutic properties, including immunomodulatory activity. However, this effect has not been studied in nanoemulsion systems. The objective of this study was to develop an innovative carvacrol-loaded nanoemulsion (CVNE) for immunomodulatory action. The developed CVNE comprised of 5% w/w oily phase (medium chain triglycerides + CV), 2% w/w surfactants (Tween 80®/Span 80®), and 93% w/w water, and was produced by ultrasonication. Dynamic light scattering over 90 days was used to characterize CVNE. Cytotoxic activity and quantification of cytokines were evaluated in peripheral blood mononuclear cell (PBMC) culture supernatants. CVNE achieved a drug loading of 4.29 mg/mL, droplet size of 165.70 ± 0.46 nm, polydispersity index of 0.14 ± 0.03, zeta potential of −10.25 ± 0.52 mV, and good stability for 90 days. CVNE showed no cytotoxicity at concentrations up to 200 µM in PBMCs. CV diminished the production of IL-2 in the PBMC supernatant. However, CVNE reduced the levels of the pro-inflammatory cytokines IL-2, IL-17, and IFN-γ at 50 µM. In conclusion, a stable CVNE was produced, which improved the CV immunomodulatory activity in PBMCs.
Collapse
|
19
|
Kaymaz A, Ulaş F, Çetinkaya A, Erimşah S. Investigating the effects of carvacrol in rats using oxygen-induced retinopathy model. Indian J Ophthalmol 2021; 69:1219-1223. [PMID: 33913864 PMCID: PMC8186611 DOI: 10.4103/ijo.ijo_1935_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose: Investigating the effects of intraperitoneal carvacrol administration in rats using the oxygen-induced retinopathy (OIR) model. Methods: A total of 28 newborn Sprague Dawley rats were used and the OIR model was created using the 50/10% oxygen model. The study composed of four groups in total. While the OIR model was not used in Group I (control group), it was created for Groups II, III, and IV. About 0.01 mL carvacrol, bevacizumab, or 0.9% NaCl was administered intraperitoneal (IP) to the rats in all groups on postnatal day (PND) 14 as follows: Group I and Group II were administered 0.9% NaCl, Group III was administered bevacizumab, and Group IV was administered carvacrol. On PND 18, rats were sacrificed and their right eyes were enucleated. Results: Histopathological and immunohistochemical studies showed that the number of vascular endothelial cells (VECs), vascular endothelial growth factor (VEGF), and tumor necrosis factor-α (TNF-α) decreased similarly in Group III and Group IV compared with Group II. VECs values for Group I, Group II, Group III, and Group IV were measured as 0 ± 0, 26.45 ± 4.57, 7.75 ± 1.98, and 5.78 ± 1.72, respectively, and it differed significantly between groups (P < 0.001). Likewise, VEGF levels were observed as 0.06 ± 0.01, 3.31 ± 0.53, 2.47 ± 0.44, and 2.49 ± 0.52, respectively, and it differed significantly between groups (P < 0.001). TNF-α levels were recorded as 0.06 ± 0.01, 3.58 ± 0.38, 2.46 ± 0.49, and 2.29 ± 0.25, respectively, and it differed significantly between groups (P < 0.001). VECs, VEGF, and TNF-α were similar between Group III and IV (range of P values were 0.486–0.998). Conclusion: The study demonstrated that carvacrol significantly reduced retinal pathological angiogenesis, NV, VEC nuclei count, VEGF, and TNF-α levels. Moreover, the observed effects were comparable to those of bevacizumab.
Collapse
Affiliation(s)
- Abdulgani Kaymaz
- Department of Ophthalmology, Faculty of Medicine, Bolu Abant Izzet Baysal University, Bolu, Turkey
| | - Fatih Ulaş
- Department of Ophthalmology, Faculty of Medicine, Bolu Abant Izzet Baysal University, Bolu, Turkey
| | - Ayhan Çetinkaya
- Department of Physiology, Faculty of Medicine, Bolu Abant Izzet Baysal University, Bolu, Turkey
| | - Sevilay Erimşah
- Department of Histology and Embryology, Faculty of Medicine, Bolu Abant Izzet Baysal University, Bolu, Turkey
| |
Collapse
|
20
|
Niza E, Božik M, Bravo I, Clemente-Casares P, Lara-Sanchez A, Juan A, Klouček P, Alonso-Moreno C. PEI-coated PLA nanoparticles to enhance the antimicrobial activity of carvacrol. Food Chem 2020; 328:127131. [DOI: 10.1016/j.foodchem.2020.127131] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/13/2020] [Accepted: 05/22/2020] [Indexed: 02/04/2023]
|
21
|
Formulation Design, Statistical Optimization, and In Vitro Evaluation of a Naringenin Nanoemulsion to Enhance Apoptotic Activity in A549 Lung Cancer Cells. Pharmaceuticals (Basel) 2020; 13:ph13070152. [PMID: 32679917 PMCID: PMC7407592 DOI: 10.3390/ph13070152] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/12/2020] [Accepted: 07/13/2020] [Indexed: 12/16/2022] Open
Abstract
Naringenin (NAR), a flavonoid mainly found in citrus and grapefruits, has proven anti-cancer activities. However, the poor water solubility and low bioavailability of NAR limits its use as a therapeutic agent. The aim of this study was to develop and optimize stable naringenin nanoemulsions (NAR-NE) using a Box-Behnken experimental design to obtain a formulation with a higher efficiency. Anticancer activity of optimized NAR-NE was evaluated in A549 lung cancer cells using cell viability, flow-cytometric assays, and enzyme-linked immunosorbent assay. The stabilized nanoemulsion, which showed a spherical surface morphology, had a globule size of 85.6 ± 2.1 nm, a polydispersity index of 0.263 ± 0.02, a zeta potential of -9.6 ± 1.2 mV, and a drug content of 97.34 ± 1.3%. The NAR release from the nanoemulsion showed an initial burst release followed by a stable and controlled release for a longer period of 24 h. The nanoemulsion exhibited excellent thermodynamic and physical stability against phase separation and storage. The NAR-NE showed concentration-dependent cytotoxicity in A549 lung cancer cells, which was greater than that of free NAR. The percentage of apoptotic cells and cell cycle arrest at the G2/M and pre-G1 phases induced by NAR-NE were significantly higher than those produced by free NAR (p < 0.05). NAR-NEs were more effective than the NAR solution in reducing Bcl2 expression, while increasing pro-apoptotic Bax and caspase-3 activity. Therefore, stabilized NAR-NE could be a suitable drug delivery system to enhance the effects of NAR in the treatment of lung cancer.
Collapse
|
22
|
Hoseinkhani Z, Norooznezhad F, Rastegari-Pouyani M, Mansouri K. Medicinal Plants Extracts with Antiangiogenic Activity: Where Is the Link? Adv Pharm Bull 2020; 10:370-378. [PMID: 32665895 PMCID: PMC7335987 DOI: 10.34172/apb.2020.045] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 12/08/2019] [Accepted: 12/29/2019] [Indexed: 12/11/2022] Open
Abstract
Angiogenesis is a strictly controlled process defined as the formation of new blood vessels essential for certain physiologic and pathologic conditions where the latter includes tumor growth, development, and metastasis. Thus, inhibiting angiogenesis along with other anticancer strategies such as chemotherapy seems to be invaluable for reaching an optimal outcome in cancer patients. It has been shown that some natural plant-derived compounds are capable of preventing the formation of these new blood vessels in the tumor and also inhibit the proliferation and growth of the cancer cells. In this review, we intend to introduce plants with anti-angiogenic properties and discuss their related features.
Collapse
Affiliation(s)
- Zohreh Hoseinkhani
- Medical Biology Research Center Medical Sciences, Health Technology Institute, Kermanshah, Iran
| | - Fathemeh Norooznezhad
- Medical Biology Research Center Medical Sciences, Health Technology Institute, Kermanshah, Iran
| | - Mohsen Rastegari-Pouyani
- Student Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kamran Mansouri
- Medical Biology Research Center Medical Sciences, Health Technology Institute, Kermanshah, Iran
| |
Collapse
|
23
|
Khan I, Bahuguna A, Shukla S, Aziz F, Chauhan AK, Ansari MB, Bajpai VK, Huh YS, Kang SC. Antimicrobial potential of the food-grade additive carvacrol against uropathogenic E. coli based on membrane depolarization, reactive oxygen species generation, and molecular docking analysis. Microb Pathog 2020; 142:104046. [PMID: 32061823 DOI: 10.1016/j.micpath.2020.104046] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 02/05/2020] [Accepted: 02/05/2020] [Indexed: 11/26/2022]
Abstract
The antibiotic resistance of extended-spectrum β-lactamase (ESBL)-producing Escherichia coli has increased drastically in recent years. In our study, we determined the principle mechanisms of action for the food-grade additive carvacrol against ESBL E. coli isolated from the blood of patients with a urinary tract infection. Carvacrol, which has a minimum inhibitory concentration of 150 μg/ml and a minimum bactericidal concentration of 300 μg/ml, reduced E. coli cell counts in a time-dependent manner. After treatment with carvacrol, the E. coli killing time was found to be 120 min. Fluorescent staining confirmed an increase in bacterial cell death, greater membrane depolarization, and an elevated oxidative burst in carvacrol-treated E. coli. Carvacrol also induced the release of cellular DNA, proteins, and potassium ions from bacterial cells and reduced both the number of E. coli in invasion assays against macrophages and the levels of the inflammatory proteins TNF-α and COX-2. In addition, carvacrol was found to inhibit β-lactamase enzyme activity (in vitro), which was supported by in silico results. Moreover, carvacrol inhibited motility, and protected against bacterial invasion. Overall, the findings suggest that carvacrol has significant antimicrobial potential against ESBL E. coli.
Collapse
Affiliation(s)
- Imran Khan
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, 100 Inha-ro, Nam-gu, Incheon, 22212, Republic of Korea; Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk, 712-714, Republic of Korea; The Hormel Institute, University of Minnesota, MN 55912, USA
| | - Ashutosh Bahuguna
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk, 712-714, Republic of Korea
| | - Shruti Shukla
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Sonipat, Haryana, 131028, India
| | - Faisal Aziz
- The Hormel Institute, University of Minnesota, MN 55912, USA
| | - Anil Kumar Chauhan
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk, 712-714, Republic of Korea
| | - Mohd Bismillah Ansari
- SABIC Technology & Innovation Centre, Saudi Basic Industries Corporation (SABIC), Riyadh, 11551, Saudi Arabia
| | - Vivek K Bajpai
- Department of Energy and Materials Engineering, Dongguk University-Seoul, 30 Pildong-ro 1-gil, Seoul, 04620, Republic of Korea.
| | - Yun Suk Huh
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, 100 Inha-ro, Nam-gu, Incheon, 22212, Republic of Korea.
| | - Sun Chul Kang
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk, 712-714, Republic of Korea.
| |
Collapse
|