1
|
Chang Y, Cui P, Zhou S, Qiu L, Jiang P, Chen S, Wang C, Wang J. Metal-phenolic network for cancer therapy. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
2
|
Lu Y, Zhu D, Le Q, Wang Y, Wang W. Ruthenium-based antitumor drugs and delivery systems from monotherapy to combination therapy. NANOSCALE 2022; 14:16339-16375. [PMID: 36341705 DOI: 10.1039/d2nr02994d] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Ruthenium complex is an important compound group for antitumor drug research and development. NAMI-A, KP1019, TLD1433 and other ruthenium complexes have entered clinical research. In recent years, the research on ruthenium antitumor drugs has not been limited to single chemotherapy drugs; other applications of ruthenium complexes have emerged such as in combination therapy. During the development of ruthenium complexes, drug delivery forms of ruthenium antitumor drugs have also evolved from single-molecule drugs to nanodrug delivery systems. The review summarizes the following aspects: (1) ruthenium complexes from monotherapy to combination therapy, including the development of single-molecule compounds, carrier nanomedicine, and self-assembly of carrier-free nanomedicine; (2) ruthenium complexes in the process of ADME in terms of absorption, distribution, metabolism and excretion; (3) the applications of ruthenium complexes in combination therapy, including photodynamic therapy (PDT), photothermal therapy (PTT), photoactivated chemotherapy (PACT), immunotherapy, and their combined application; (4) the future prospects of ruthenium-based antitumor drugs.
Collapse
Affiliation(s)
- Yu Lu
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing 100069, P. R. China.
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing Laboratory of Oral Health, Beijing 100069, P. R. China
- Department of Chemistry, University of Bergen, P. O. Box 7803, 5020 Bergen, Norway
| | - Di Zhu
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing 100069, P. R. China.
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing Laboratory of Oral Health, Beijing 100069, P. R. China
| | - Quynh Le
- Center for Pharmacy, University of Bergen, P. O. Box 7803, 5020 Bergen, Norway.
| | - Yuji Wang
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing 100069, P. R. China.
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing Laboratory of Oral Health, Beijing 100069, P. R. China
| | - Wei Wang
- Center for Pharmacy, University of Bergen, P. O. Box 7803, 5020 Bergen, Norway.
- Department of Chemistry, University of Bergen, P. O. Box 7803, 5020 Bergen, Norway
| |
Collapse
|
3
|
Wang S, Song Y, Ma J, Chen X, Guan Y, Peng H, Yan G, Tang R. Dynamic crosslinked polymeric nano-prodrugs for highly selective synergistic chemotherapy. Asian J Pharm Sci 2022; 17:880-891. [PMID: 36600901 PMCID: PMC9800956 DOI: 10.1016/j.ajps.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 09/12/2022] [Accepted: 09/27/2022] [Indexed: 01/07/2023] Open
Abstract
To achieve highly selective synergistic chemotherapy attractive for clinical translation, the precise polymeric nano-prodrugs (PPD-NPs) were successfully constructed via the facile crosslinking reaction between pH-sensitive poly(ortho ester)s and reduction-sensitive small molecule synergistic prodrug (Pt(IV)-1). PPD-NPs endowed the defined structure and high drug loading of cisplatin and demethylcantharidin (DMC). Moreover, PPD-NPs exhibited steady long-term storage and circulation via the crosslinked structure, suitable negative potentials and low critical micelle concentration (CMC), improved selective tumour accumulation and cellular internalization via dynamic size transition and surficial amino protonation at tumoural extracellular pH, promoted efficient disintegration and drug release at tumoural intracellular pH/glutathione, and enhanced cytotoxicity via the synergistic effect between cisplatin and DMC with the feed ratio of 1:2, achieving significant tumour suppression while decreasing the side effects. Thus, the dynamic crosslinked polymeric nano-prodrugs exhibit tremendous potential for clinically targeted synergistic cancer therapy.
Collapse
Affiliation(s)
- Shi Wang
- Engineering Research Center for Biomedical Materials, Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, Hefei 230601, China
| | - Yining Song
- Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu Medical College, Bengbu 233030, China
| | - Jingge Ma
- Engineering Research Center for Biomedical Materials, Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, Hefei 230601, China
| | - Xinyang Chen
- Engineering Research Center for Biomedical Materials, Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, Hefei 230601, China
| | - Yuanhui Guan
- Engineering Research Center for Biomedical Materials, Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, Hefei 230601, China
| | - Hui Peng
- Engineering Research Center for Biomedical Materials, Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, Hefei 230601, China
| | - Guoqing Yan
- Engineering Research Center for Biomedical Materials, Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, Hefei 230601, China,Corresponding authors.
| | - Rupei Tang
- Engineering Research Center for Biomedical Materials, Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, Hefei 230601, China,Corresponding authors.
| |
Collapse
|
4
|
Liang L, Wu X, Shi C, Wen H, Wu S, Chen J, Huang C, Wang Y, Liu Y. Synthesis and characterization of polypyridine ruthenium(II) complexes and anticancer efficacy studies in vivo and in vitro. J Inorg Biochem 2022; 236:111963. [PMID: 35988387 DOI: 10.1016/j.jinorgbio.2022.111963] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/06/2022] [Accepted: 08/09/2022] [Indexed: 12/24/2022]
Abstract
In this article, ligand IPP (IPP = 4-(1H-imidazo[4,5-f][1,10]phenanthrolin-2-yl)-N,N-diphenylaniline) and its three Ru(II) complexes: [Ru(bpy)2(IPP)](ClO4)2 (1) (bpy = 2,2'-bipyridine), [Ru(dmbpy)2(IPP)](ClO4)2 (2) (dmbpy = 4,4'-dimethyl-2,2'-bipyridine), and [Ru(phen)2(IPP)](ClO4)2 (3) (phen = 1,10-phenanthroline) were synthesized and characterized. The anticancer activity in vitro of the complexes was investigated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method. The scratching and colony-forming experiments confirmed the complexes 1, 2, 3 interfered with the proliferation and migration ability of cells. The accumulation of the complexes in cells was researched and we found that these complexes directly accumulated in mitochondria, then the complexes cause a decline of the mitochondrial membrane potential and induce an increase of intracellular reactive oxygen species (ROS) levels. The growth of B16 cells were inhibited by 1, 2 and 3 at G0/G1 phase. Apoptosis was induced through mitochondrial pathway and the expression of apoptosis-related factors was regulated. In addition, the complexes promoted the transition of poly(ADP-ribose)polymerase (PARP) into the cleaved form (Cleaved PARP), downregulated the anti-apoptotic proteins, and upregulated the pro-apoptotic proteins. Consequently, complexes 1, 2 and 3 exerted their anticancer activity by regulating B-cell lymphoma-2 (Bcl-2) family proteins. Complex 2 showed excellent antitumor effects with a high inhibitory rate of 65.95% in vivo. Taken together, the complexes cause apoptosis in B16 cells through a ROS-mediated mitochondrial dysfunction pathway.
Collapse
Affiliation(s)
- Lijuan Liang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Xiaoyun Wu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Chuanling Shi
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Haoyu Wen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Shouhai Wu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, PR China.
| | - Jing Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Chunxia Huang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yi Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yunjun Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems and Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, PR China.
| |
Collapse
|
5
|
Noureldeen AFH, Aziz SW, Shouman SA, Mohamed MM, Attia YM, Ramadan RM, Elhady MM. Molecular Design, Spectroscopic, DFT, Pharmacological, and Molecular Docking Studies of Novel Ruthenium(III)-Schiff Base Complex: An Inhibitor of Progression in HepG2 Cells. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192013624. [PMID: 36294202 PMCID: PMC9603487 DOI: 10.3390/ijerph192013624] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/28/2022] [Accepted: 10/04/2022] [Indexed: 05/03/2023]
Abstract
A novel ruthenium(III)-pyrimidine Schiff base was synthesized and characterized using different analytical and spectroscopic techniques. Molecular geometries of the ligand and ruthenium complex were investigated using the DFT-B3LYP level of theory. The quantum global reactivity descriptors were also calculated. Various biological and molecular docking studies of the complex are reported to explore its potential application as a therapeutic drug. Cytotoxicity of the complex was screened against cancer colorectal (HCT116), breast (MCF-7 and T47D), and hepatocellular (HepG2) cell lines as well as a human normal cell line (HSF). The complex effectively inhibited the tested cancer cells with variable degree with higher activity towards HepG2 (IC50 values were 29 μM for HepG2, 38.5 μM for T47D, 39.7 μM for HCT, and 46.7 μM for MCF-7 cells). The complex induced apoptosis and cell cycle arrest in the S phase of HepG2 cells. The complex significantly induced the expression of H2AX and caspase 3 and caspase 7 gene and the protein level of caspase 3, as well as inhibited VEGF-A and mTOR/AKT, SND1, and NF-kB gene expression. The molecular docking studies supported the increased total apoptosis of treated HepG2 cells due to strong interaction of the complex with DNA. Additionally, the possible binding interaction of the complex with caspase 3 could be responsible for the elevated activity of caspase 3-treated cells. The score values for the two receptors were -3.25 and -3.91 kcal/mol.
Collapse
Affiliation(s)
- Amani F. H. Noureldeen
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
- Correspondence: (A.F.H.N.); (R.M.R.)
| | - Safa W. Aziz
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
- Department of Laboratory and Clinical Sciences, College of Pharmacy, University of Babylon, Babylon 51002, Iraq
| | - Samia A. Shouman
- Cancer Biology Department, National Cancer Institute, Cairo University, Cairo 12613, Egypt
| | - Magdy M. Mohamed
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
| | - Yasmin M. Attia
- Cancer Biology Department, National Cancer Institute, Cairo University, Cairo 12613, Egypt
| | - Ramadan M. Ramadan
- Chemistry Department, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
- Correspondence: (A.F.H.N.); (R.M.R.)
| | - Mostafa M. Elhady
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
| |
Collapse
|
6
|
Sulfonamides differing in the alkylamino substituent length – Synthesis, electrochemical characteristic, acid-base profile and complexation properties. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115868] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
7
|
Li X, Jiang F, Liu M, Qu Y, Lan Z, Dai X, Huang C, Yue X, Zhao S, Pan X, Zhang C. Synthesis, Characterization, and Bioactivities of Polysaccharide Metal Complexes: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6922-6942. [PMID: 35639848 DOI: 10.1021/acs.jafc.2c01349] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Natural polysaccharides are critical to a wide range of fields (e.g., medicine, food production, and cosmetics) for their various remarkable physical properties and biological activities. However, the bioactivities of naturally acquired polysaccharides may be unsatisfactory and limit their further applications. It is generally known that the chemical structure exhibited by polysaccharides lays the material basis for their biological activities. Accordingly, possible structural modifications should be conducted on polysaccharides for their enhancement. Recently, polysaccharides complexed with metal ions (e.g., Fe, Zn, Mg, Cr, and Pt) have been reported to be possibly used to improve their bioactivities. Moreover, since the properties exhibited by metal ions are normally conserved, polysaccharides may be endowed with new applications. In this review, the synthesis methods, characterization methods, and bioactivities of polysaccharide metal complexes are summarized specifically. Then, the application prospects and limitations of these complexes are analyzed and discussed.
Collapse
Affiliation(s)
- Xuebo Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P. R. China
| | - Fuchen Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P. R. China
| | - Meiyan Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P. R. China
| | - Yan Qu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P. R. China
| | - Zhiqiong Lan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P. R. China
| | - Xiaolin Dai
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P. R. China
| | - Chi Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P. R. China
| | - Xuan Yue
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P. R. China
| | - Shiyi Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P. R. China
| | - Xiaoli Pan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P. R. China
| | - Chen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P. R. China
| |
Collapse
|
8
|
Ferraro MG, Piccolo M, Misso G, Santamaria R, Irace C. Bioactivity and Development of Small Non-Platinum Metal-Based Chemotherapeutics. Pharmaceutics 2022; 14:pharmaceutics14050954. [PMID: 35631543 PMCID: PMC9147010 DOI: 10.3390/pharmaceutics14050954] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 02/04/2023] Open
Abstract
Countless expectations converge in the multidisciplinary endeavour for the search and development of effective and safe drugs in fighting cancer. Although they still embody a minority of the pharmacological agents currently in clinical use, metal-based complexes have great yet unexplored potential, which probably hides forthcoming anticancer drugs. Following the historical success of cisplatin and congeners, but also taking advantage of conventional chemotherapy limitations that emerged with applications in the clinic, the design and development of non-platinum metal-based chemotherapeutics, either as drugs or prodrugs, represents a rapidly evolving field wherein candidate compounds can be fine-tuned to access interactions with druggable biological targets. Moving in this direction, over the last few decades platinum family metals, e.g., ruthenium and palladium, have been largely proposed. Indeed, transition metals and molecular platforms where they originate are endowed with unique chemical and biological features based on, but not limited to, redox activity and coordination geometries, as well as ligand selection (including their inherent reactivity and bioactivity). Herein, current applications and progress in metal-based chemoth are reviewed. Converging on the recent literature, new attractive chemotherapeutics based on transition metals other than platinum—and their bioactivity and mechanisms of action—are examined and discussed. A special focus is committed to anticancer agents based on ruthenium, palladium, rhodium, and iridium, but also to gold derivatives, for which more experimental data are nowadays available. Next to platinum-based agents, ruthenium-based candidate drugs were the first to reach the stage of clinical evaluation in humans, opening new scenarios for the development of alternative chemotherapeutic options to treat cancer.
Collapse
Affiliation(s)
- Maria Grazia Ferraro
- BioChemLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (M.G.F.); (M.P.); (R.S.)
| | - Marialuisa Piccolo
- BioChemLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (M.G.F.); (M.P.); (R.S.)
| | - Gabriella Misso
- Department of Precision Medicine, School of Medicine and Surgery, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
- Correspondence: (G.M.); (C.I.)
| | - Rita Santamaria
- BioChemLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (M.G.F.); (M.P.); (R.S.)
| | - Carlo Irace
- BioChemLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (M.G.F.); (M.P.); (R.S.)
- Correspondence: (G.M.); (C.I.)
| |
Collapse
|
9
|
Boubakri L, Chakchouk-Mtiba A, Naouali O, Mellouli L, Mansour L, Özdemir I, Yaser S, Sauthier M, Hamdi N. Ruthenium(II) complexes bearing benzimidazole-based N-heterocyclic carbene (NHC) ligands as potential antimicrobial, antioxidant, enzyme inhibition, and antiproliferative agents. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2060745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Lamia Boubakri
- Research Laboratory of Environmental Sciences and Technologies (LR16ES09), Higher Institute of Environmental Sciences and Technology, University of Carthage, Hammam-Lif, Tunisia
| | - Ahlem Chakchouk-Mtiba
- Laboratory of Microorganisms and Enzymatic Biotechnology and Biomolecules, Center of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Olfa Naouali
- Laboratory of Applied Chemistry and Natural Substances Resources and Environment, Faculty of Sciences, University of Carthage, Zarzouna, Bizerta, Tunisia
| | - Lotfi Mellouli
- Laboratory of Microorganisms and Enzymatic Biotechnology and Biomolecules, Center of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Lamjed Mansour
- Zoology Department, College of Science, King Saud University, Saudi Arabia, Riyadh, Saudi Arabia
| | - Ismail Özdemir
- Faculty of Science and Art, Department of Chemistry, İnönü University, Malatya, Turkey
- Catalysis Research and Application Center, İnönü University, Malatya, Turkey
| | - Sedat Yaser
- Faculty of Science and Art, Department of Chemistry, İnönü University, Malatya, Turkey
- Catalysis Research and Application Center, İnönü University, Malatya, Turkey
| | - Mathieu Sauthier
- Ecole Nationale Superieure de Chimie de Lille, Unité de Catalyse et Chimie du Solide, Villeneuve d’Ascq, France
| | - Naceur Hamdi
- Research Laboratory of Environmental Sciences and Technologies (LR16ES09), Higher Institute of Environmental Sciences and Technology, University of Carthage, Hammam-Lif, Tunisia
| |
Collapse
|
10
|
Xu J, Wang J, Ye J, Jiao J, Liu Z, Zhao C, Li B, Fu Y. Metal-Coordinated Supramolecular Self-Assemblies for Cancer Theranostics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101101. [PMID: 34145984 PMCID: PMC8373122 DOI: 10.1002/advs.202101101] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/25/2021] [Indexed: 05/07/2023]
Abstract
Metal-coordinated supramolecular nanoassemblies have recently attracted extensive attention as materials for cancer theranostics. Owing to their unique physicochemical properties, metal-coordinated supramolecular self-assemblies can bridge the boundary between traditional inorganic and organic materials. By tailoring the structural components of the metal ions and binding ligands, numerous multifunctional theranostic nanomedicines can be constructed. Metal-coordinated supramolecular nanoassemblies can modulate the tumor microenvironment (TME), thus facilitating the development of TME-responsive nanomedicines. More importantly, TME-responsive organic-inorganic hybrid nanomaterials can be constructed in vivo by exploiting the metal-coordinated self-assembly of a variety of functional ligands, which is a promising strategy for enhancing the tumor accumulation of theranostic molecules. In this review, recent advancements in the design and fabrication of metal-coordinated supramolecular nanomedicines for cancer theranostics are highlighted. These supramolecular compounds are classified according to the order in which the coordinated metal ions appear in the periodic table. Furthermore, the prospects and challenges of metal-coordinated supramolecular self-assemblies for both technical advances and clinical translation are discussed. In particular, the superiority of TME-responsive nanomedicines for in vivo coordinated self-assembly is elaborated, with an emphasis on strategies that enhance the accumulation of functional components in tumors for an ideal theranostic outcome.
Collapse
Affiliation(s)
- Jiating Xu
- Key Laboratory of Forest Plant EcologyMinistry of EducationCollege of ChemistryChemical Engineering and Resource UtilizationNortheast Forestry UniversityHarbin150040P. R. China
| | - Jun Wang
- Key Laboratory of Forest Plant EcologyMinistry of EducationCollege of ChemistryChemical Engineering and Resource UtilizationNortheast Forestry UniversityHarbin150040P. R. China
| | - Jin Ye
- Key Laboratory of Forest Plant EcologyMinistry of EducationCollege of ChemistryChemical Engineering and Resource UtilizationNortheast Forestry UniversityHarbin150040P. R. China
| | - Jiao Jiao
- Key Laboratory of Forest Plant EcologyMinistry of EducationCollege of ChemistryChemical Engineering and Resource UtilizationNortheast Forestry UniversityHarbin150040P. R. China
| | - Zhiguo Liu
- Key Laboratory of Forest Plant EcologyMinistry of EducationCollege of ChemistryChemical Engineering and Resource UtilizationNortheast Forestry UniversityHarbin150040P. R. China
| | - Chunjian Zhao
- Key Laboratory of Forest Plant EcologyMinistry of EducationCollege of ChemistryChemical Engineering and Resource UtilizationNortheast Forestry UniversityHarbin150040P. R. China
| | - Bin Li
- Key Laboratory of Forest Plant EcologyMinistry of EducationCollege of ChemistryChemical Engineering and Resource UtilizationNortheast Forestry UniversityHarbin150040P. R. China
| | - Yujie Fu
- Key Laboratory of Forest Plant EcologyMinistry of EducationCollege of ChemistryChemical Engineering and Resource UtilizationNortheast Forestry UniversityHarbin150040P. R. China
| |
Collapse
|
11
|
Nandi PG, Jadi PK, Das K, Prathapa SJ, Mandal BB, Kumar A. Synthesis of NNN Chiral Ruthenium Complexes and Their Cytotoxicity Studies. Inorg Chem 2021; 60:7422-7432. [PMID: 33909427 DOI: 10.1021/acs.inorgchem.1c00698] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The synthesis and characterization of chiral pincer-ruthenium complexes of the type (R2NNN)RuCl2 (PPh3) (R = 3-methylbutyl and 3,3-dimethylbutyl) is reported here. The cytotoxicity studies of these complexes were studied and compared with the corresponding activity of achiral complexes. The cytotoxic effect of pincer-ruthenium complexes on human dermal fibroblasts and human tongue carcinoma cells assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay displayed an inhibition of normal and cancer cell growth in a dose-dependent manner. Intracellular reactive oxygen species (ROS) level measurement, lactate dehydrogenase assay, DNA fragmentation, and necrosis studies revealed that treatment with pincer-ruthenium complexes induced a redox imbalance in SAS cells by upregulating ROS generation and caused necrotic cell death by disrupting the cellular membrane integrity.
Collapse
Affiliation(s)
- Pran Gobinda Nandi
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Praveen Kumar Jadi
- Biomaterial and Tissue Engineering Laboratory, Department of Biosciences & Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Kanu Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | | | - Biman B Mandal
- Biomaterial and Tissue Engineering Laboratory, Department of Biosciences & Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.,Center for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Akshai Kumar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.,Center for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
12
|
Mishra I, Bhol M, Kalimuthu P, Sathiyendiran M. Emerging Spacers-Based Ligands for Supramolecular Coordination Complexes. CHEM REC 2021; 21:594-614. [PMID: 33615668 DOI: 10.1002/tcr.202000150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Indexed: 02/01/2023]
Abstract
The design and self-assembly of supramolecular coordination complexes (SCCs) i. e., discrete cyclic metalloarchitectures such as cycles, cages, mesocates, and helicates with desired size, shape, and properties have been increasing exponentially owing to their potential applications in molecular sensors, molecular cargos, molecular recognition, and catalysis. The introduction of the organic motifs and metal complexes as a spacer provides functionality to the metalloarchitecture. This review mainly focusses on newly evolving spacer based ligands employed to yield simple to high-order metallosupramolecular assemblies using straight-forward approaches. The new spacers including corannulene, organic cyclic framework, bicyclic organic motifs, aliphatic chain, metalloligands, triarylboron, BODIPY, azaphosphatrane, phosphine, and thio/selenophosphates offer a great set of properties and in-built functionalities to the metalloarchitectures which are discussed in this review.
Collapse
Affiliation(s)
- Isha Mishra
- School of Chemistry, University of Hyderabad, Hyderabad, 500 046, India
| | - Mamina Bhol
- School of Chemistry, University of Hyderabad, Hyderabad, 500 046, India
| | - Palanisamy Kalimuthu
- Department of Chemistry, The Gandhigram Rural Institute (Deemed to be University), Gandhigram, 624 302, Tamil Nadu, India
| | | |
Collapse
|
13
|
Han Q, Huang L, Wang Y, Sun S, Huang H, Li F, Wang F, Chen L, Zhang H, Wang Y. Platinum (II)-coordinated Portulaca oleracea polysaccharides as metal-drug based polymers for anticancer study. Colloids Surf B Biointerfaces 2021; 201:111628. [PMID: 33639509 DOI: 10.1016/j.colsurfb.2021.111628] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 01/15/2021] [Accepted: 02/13/2021] [Indexed: 12/12/2022]
Abstract
Novel polysaccharide-platinum conjugated polymers bearing alendronate on Portulaca oleracea polysaccharides (PPS) were designed and synthesized. Their chemical structures and properties were characterized by Fourier transform infrared spectroscopy (FT-IR), 1H NMR and 31P NMR spectroscopy, Thermogravimetric analysis (TGA), X-ray powder diffraction (XRD), UV-vis spectrophotometer (UV-vis) and other analysis methods. The results demonstrated that alendronate can be used as the linker of Portulaca oleracea polysaccharides and platinum compounds. Portulaca oleracea polysaccharides-alendronate (PPS-ALN) conjugates exhibited stronger antioxidant ability than PPS. The cytotoxicity assay to cancer cells was tested in vitro, and the Portulaca oleracea polysaccharides-alendronate-platinum (PPS-ALN-Pt) conjugates strongly inhibited the proliferation of cancer cells than PPS and PPS-ALN. The evaluation of complexes affinity toward supercoiled plasmid DNA, displayed a high DNA interaction. Interestingly, the platinum conjugates displayed immunological competence in HeLa cells by cellular immunofluorescence assay. Besides, the cellular platinum accumulation of PPS-ALN-Pt conjugates was higher than that of cisplatin in HeLa cells, implying that the polysaccharide-platinum conjugated polymers might have a synergistically therapeutic application in metal anticancer drug delivery.
Collapse
Affiliation(s)
- Qianqian Han
- Institute of Environmental Toxicology and Environmental Ecology, Yancheng Teachers University, Yancheng City, Jiangsu Province, 224051, People's Republic of China; Chemistry and Chemical Engineering, Nanjing University of Technology, Nanjing City, Jiangsu Province, 210009, People's Republic of China
| | - Lirong Huang
- Cardio-Thoracic Surgery, Yancheng First People's Hospital, Yancheng, 224006, People's Republic of China
| | - Ying Wang
- Institute of Environmental Toxicology and Environmental Ecology, Yancheng Teachers University, Yancheng City, Jiangsu Province, 224051, People's Republic of China; Chemistry and Chemical Engineering, Nanjing University of Technology, Nanjing City, Jiangsu Province, 210009, People's Republic of China
| | - Shixin Sun
- Institute of Environmental Toxicology and Environmental Ecology, Yancheng Teachers University, Yancheng City, Jiangsu Province, 224051, People's Republic of China.
| | - Hao Huang
- Institute of Environmental Toxicology and Environmental Ecology, Yancheng Teachers University, Yancheng City, Jiangsu Province, 224051, People's Republic of China
| | - Fei Li
- Institute of Environmental Toxicology and Environmental Ecology, Yancheng Teachers University, Yancheng City, Jiangsu Province, 224051, People's Republic of China
| | - Fangtian Wang
- Institute of Environmental Toxicology and Environmental Ecology, Yancheng Teachers University, Yancheng City, Jiangsu Province, 224051, People's Republic of China
| | - Ligen Chen
- Department of Bioengineering School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, 224054, People's Republic of China
| | - Hongmei Zhang
- Institute of Environmental Toxicology and Environmental Ecology, Yancheng Teachers University, Yancheng City, Jiangsu Province, 224051, People's Republic of China.
| | - Yanqing Wang
- Institute of Environmental Toxicology and Environmental Ecology, Yancheng Teachers University, Yancheng City, Jiangsu Province, 224051, People's Republic of China.
| |
Collapse
|
14
|
Chen F, Li Y, Lin X, Qiu H, Yin S. Polymeric Systems Containing Supramolecular Coordination Complexes for Drug Delivery. Polymers (Basel) 2021; 13:370. [PMID: 33503965 PMCID: PMC7865670 DOI: 10.3390/polym13030370] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 12/24/2022] Open
Abstract
Cancer has become a common disease that seriously endangers human health and life. Up to now, the essential treatment method has been drug therapy, and drug delivery plays an important role in cancer therapy. To improve the efficiency of drug therapy, researchers are committed to improving drug delivery methods to enhance drug pharmacokinetics and cancer accumulation. Supramolecular coordination complexes (SCCs) with well-defined shapes and sizes are formed through the coordination between diverse functional organic ligands and metal ions, and they have emerged as potential components in drug delivery and cancer therapy. In particular, micelles or vesicles with the required biocompatibility and stability are synthesized using SCC-containing polymeric systems to develop novel carriers for drug delivery that possess combined properties and extended system tunability. In this study, the research status of SCC-containing polymeric systems as drug carriers and adjuvants for cancer treatment is reviewed, and a special focus is given to their design and preparation.
Collapse
Affiliation(s)
- Feng Chen
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China; (F.C.); (Y.L.); (X.L.)
| | - Yang Li
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China; (F.C.); (Y.L.); (X.L.)
| | - Xiongjie Lin
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China; (F.C.); (Y.L.); (X.L.)
| | - Huayu Qiu
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China; (F.C.); (Y.L.); (X.L.)
- Key Laboratory of Organosilicon Chemistry and Materials Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| | - Shouchun Yin
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China; (F.C.); (Y.L.); (X.L.)
| |
Collapse
|
15
|
Costa MS, Gonçalves YG, Borges BC, Silva MJB, Amstalden MK, Costa TR, Antunes LMG, Rodrigues RS, Rodrigues VDM, de Faria Franca E, Zoia MAP, de Araújo TG, Goulart LR, Von Poelhsitz G, Yoneyama KAG. Ruthenium (II) complex cis-[Ru II(ŋ 2-O 2CC 7H 7O 2)(dppm) 2]PF 6-hmxbato induces ROS-mediated apoptosis in lung tumor cells producing selective cytotoxicity. Sci Rep 2020; 10:15410. [PMID: 32958783 PMCID: PMC7506019 DOI: 10.1038/s41598-020-72420-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 08/31/2020] [Indexed: 12/24/2022] Open
Abstract
Ruthenium complexes have been extensively explored as potential molecules for cancer treatment. Considering our previous findings on the remarkable cytotoxic activity exhibited by the ruthenium (II) complex 3-hydroxy-4-methoxybenzoate (hmxbato)-cis-[RuII(ŋ2-O2CC7H7O2)(dppm)2]PF6 against Leishmania promastigotes and also the similar metabolic characteristics between trypanosomatids and tumor cells, the present study aimed to analyze the anticancer potential of hmxbato against lung tumor cells, as well as the partial death mechanisms involved. Hmxbato demonstrated selective cytotoxicity against A549 lung tumor cells. In addition, this complex at a concentration of 3.8 µM was able to expressively increase the generation of reactive oxygen species (ROS) in tumor cells, causing an oxidative stress that may culminate in: (1) reduction in cellular proliferation; (2) changes in cell morphology and organization patterns of the actin cytoskeleton; (3) cell arrest in the G2/M phase of the cell cycle; (4) apoptosis; (5) changes in the mitochondrial membrane potential and (6) initial DNA damage. Furthermore, we demonstrated that the induction of programmed cell death can occur by the intrinsic apoptotic pathway through the activation of caspases. It is also worth highlighting that hmxbato exhibited predominant actions on A549 tumor cells in comparison to BEAS-2B normal bronchial epithelium cells, which makes this complex an interesting candidate for the design of new drugs against lung cancer.
Collapse
Affiliation(s)
- Mônica Soares Costa
- Laboratório de Bioquímica e Toxinas Animais, Instituto de Biotecnologia, Universidade Federal de Uberlândia, UFU, Pará avenue, 1720, Uberlândia, MG, CEP 38400-902, Brazil.
| | | | - Bruna Cristina Borges
- Laboratório de Osteoimunologia e Imunologia dos Tumores, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, UFU, Uberlândia, MG, Brazil
| | - Marcelo José Barbosa Silva
- Laboratório de Osteoimunologia e Imunologia dos Tumores, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, UFU, Uberlândia, MG, Brazil
| | - Martin Krähenbühl Amstalden
- Departamento de Análises Clínicas, Toxicologia e Ciências Alimentares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, CEP 14040-903, Brazil
| | - Tássia Rafaella Costa
- Laboratório de Bioquímica e Toxinas Animais, Instituto de Biotecnologia, Universidade Federal de Uberlândia, UFU, Pará avenue, 1720, Uberlândia, MG, CEP 38400-902, Brazil
| | - Lusânia Maria Greggi Antunes
- Departamento de Análises Clínicas, Toxicologia e Ciências Alimentares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, CEP 14040-903, Brazil
| | - Renata Santos Rodrigues
- Laboratório de Bioquímica e Toxinas Animais, Instituto de Biotecnologia, Universidade Federal de Uberlândia, UFU, Pará avenue, 1720, Uberlândia, MG, CEP 38400-902, Brazil
| | - Veridiana de Melo Rodrigues
- Laboratório de Bioquímica e Toxinas Animais, Instituto de Biotecnologia, Universidade Federal de Uberlândia, UFU, Pará avenue, 1720, Uberlândia, MG, CEP 38400-902, Brazil
| | - Eduardo de Faria Franca
- Laboratório de Cristalografia e Química Computacional, Instituto de Química, Universidade Federal de Uberlândia, UFU, Uberlândia, MG, Brazil
| | - Mariana Alves Pereira Zoia
- Laboratório de Nanobiotecnologia, Instituto de Biotecnologia, Universidade Federal de Uberlândia, UFU, Uberlândia, MG, Brazil
| | - Thaise Gonçalves de Araújo
- Laboratório de Nanobiotecnologia, Instituto de Biotecnologia, Universidade Federal de Uberlândia, UFU, Uberlândia, MG, Brazil
| | - Luiz Ricardo Goulart
- Laboratório de Nanobiotecnologia, Instituto de Biotecnologia, Universidade Federal de Uberlândia, UFU, Uberlândia, MG, Brazil
| | - Gustavo Von Poelhsitz
- Instituto de Química, Universidade Federal de Uberlândia, UFU, Uberlândia, MG, Brazil
| | - Kelly Aparecida Geraldo Yoneyama
- Laboratório de Bioquímica e Toxinas Animais, Instituto de Biotecnologia, Universidade Federal de Uberlândia, UFU, Pará avenue, 1720, Uberlândia, MG, CEP 38400-902, Brazil.
| |
Collapse
|
16
|
Shad PM, Karizi SZ, Javan RS, Mirzaie A, Noorbazargan H, Akbarzadeh I, Rezaie H. Folate conjugated hyaluronic acid coated alginate nanogels encapsulated oxaliplatin enhance antitumor and apoptosis efficacy on colorectal cancer cells (HT29 cell line). Toxicol In Vitro 2020; 65:104756. [DOI: 10.1016/j.tiv.2019.104756] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 12/20/2019] [Accepted: 12/24/2019] [Indexed: 12/12/2022]
|