1
|
Miller MA, Medina S. Life at the interface: Engineering bio-nanomaterials through interfacial molecular self-assembly. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1966. [PMID: 38725255 PMCID: PMC11090466 DOI: 10.1002/wnan.1966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/18/2024] [Accepted: 04/20/2024] [Indexed: 05/15/2024]
Abstract
Interfacial self-assembly describes the directed organization of molecules and colloids at phase boundaries. Believed to be fundamental to the inception of primordial life, interfacial assembly is exploited by a myriad of eukaryotic and prokaryotic organisms to execute physiologic activities and maintain homeostasis. Inspired by these natural systems, chemists, engineers, and materials scientists have sought to harness the thermodynamic equilibria at phase boundaries to create multi-dimensional, highly ordered, and functional nanomaterials. Recent advances in our understanding of the biophysical principles guiding molecular assembly at gas-solid, gas-liquid, solid-liquid, and liquid-liquid interphases have enhanced the rational design of functional bio-nanomaterials, particularly in the fields of biosensing, bioimaging and biotherapy. Continued development of non-canonical building blocks, paired with deeper mechanistic insights into interphase self-assembly, holds promise to yield next generation interfacial bio-nanomaterials with unique, and perhaps yet unrealized, properties. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Michael A Miller
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Scott Medina
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania, USA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
2
|
Nerath G, Oliveira DA, Siqueira JR, Caseli L. Using Carbon Nanotubes to Improve Enzyme Activity and Electroactivity of Fatty Acid Langmuir-Blodgett Film-Incorporated Galactose Oxidase for Sensing and Energy Storage Applications. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38334123 DOI: 10.1021/acsami.3c18824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Incorporating enzymes into nanostructured supercapacitor devices represents a groundbreaking advancement in energy storage. Enzyme catalysis using nanomaterials enhances performance, efficiency, and stability by facilitating precise charge transfer, while the nanostructure provides a high surface area and improved conductivity. This synergy yields eco-friendly, high-performance energy storage solutions crucial for diverse applications, from portable electronics to renewable energy systems. In this study, we harnessed the versatility of Langmuir-Blodgett films to create meticulously organized thin films with specific enzyme properties, coupled with carbon nanotubes, to develop biosupercapacitors. Langmuir monolayers were constructed with stearic acid, carbon nanotubes, and galactose oxidase. Following comprehensive characterization using tensiometric, rheological, morphological, and spectroscopic techniques, the monolayers were transferred to solid supports, yielding Langmuir-Blodgett films. These films exhibited superior performance, with persisting enzyme activity. However, increasing film thickness did not enhance enzymatic activity values, indicating a surface-driven process. Subsequently, we explored the electrochemical properties of the films, revealing stability compatible with supercapacitor applications. The introduction of carbon nanotubes demonstrated a higher capacitance, indicating the potential viability of the films for energy storage applications.
Collapse
Affiliation(s)
- Gabriel Nerath
- Laboratory of Hybrid Materials (LMH), Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo (UNIFESP), Diadema 09913-030, São Paulo, Brazil
| | - Danilo A Oliveira
- Laboratory of Applied Nanomaterials and Nanostructures (LANNA), Institute of Exact Sciences, Natural and Education, Federal University of Triângulo Mineiro (UFTM), Uberaba 38064-200, Minas Gerais, Brazil
| | - José R Siqueira
- Laboratory of Applied Nanomaterials and Nanostructures (LANNA), Institute of Exact Sciences, Natural and Education, Federal University of Triângulo Mineiro (UFTM), Uberaba 38064-200, Minas Gerais, Brazil
| | - Luciano Caseli
- Laboratory of Hybrid Materials (LMH), Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo (UNIFESP), Diadema 09913-030, São Paulo, Brazil
| |
Collapse
|
3
|
Duan F, Sun T, Zhang J, Wang K, Wen Y, Lu L. Recent innovations in immobilization of β-galactosidases for industrial and therapeutic applications. Biotechnol Adv 2022; 61:108053. [DOI: 10.1016/j.biotechadv.2022.108053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 11/17/2022]
|
4
|
Rytel K, Kędzierski K, Barszcz B, Biadasz A, Majchrzycki Ł, Wróbel D. The influence of zinc phthalocyanine on the formation and properties of multiwalled carbon nanotubes thin films on the air–solid and air–water interface. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Scholl FA, Siqueira JR, Caseli L. Graphene Oxide Modulating the Bioelectronic Properties of Penicillinase Immobilized in Lipid Langmuir-Blodgett Films. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:2372-2378. [PMID: 35143210 DOI: 10.1021/acs.langmuir.1c03410] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this paper, graphene oxide was incorporated in penicillinase-lipid Langmuir monolayers and transferred to solid supports as Langmuir-Blodgett (LB) films so that the enzyme catalytic properties could be evaluated. Adsorption of penicillinase and graphene oxide on dimyristoylphosphatidic acid (DMPA) monolayers at the air-water interface was investigated by tensiometry, vibrational spectroscopy, and Brewster angle microscopy. The LB films were characterized by quartz crystal microbalance, infrared spectroscopy, luminescence spectroscopy, and atomic force microscopy. Enzyme activity was studied with UV-vis spectroscopy, and the feasibility of the supramolecular device nanostructured as ultrathin films was essayed as an optical sensor device. The presence of graphene oxide in the enzyme-lipid LB film not only tuned the catalytic activity of penicillinase but also helped conserve its enzyme activity after weeks. These results may be related not only to the molecular architecture provided by the film but also to the synergism between the compounds on the active layer, leading to a molecular architecture that allowed a fast analyte diffusion owing to a suitable molecular accommodation which also preserved the penicillinase activity. This work then demonstrates the feasibility of employing LB films composed of lipids, graphene oxide, and enzymes as optical devices for biosensing applications as a proof-of-concept experiment.
Collapse
Affiliation(s)
- Fábio A Scholl
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo (UNIFESP), 09913-030 Diadema, São Paulo, Brazil
| | - José R Siqueira
- Laboratory of Applied Nanomaterials and Nanostructures (LANNA), Institute of Exact Sciences, Natural and Education, Federal University of Triângulo Mineiro (UFTM), 38064-200 Uberaba, Minas Gerais, Brazil
| | - Luciano Caseli
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo (UNIFESP), 09913-030 Diadema, São Paulo, Brazil
| |
Collapse
|
6
|
Oliveira ON, Caseli L, Ariga K. The Past and the Future of Langmuir and Langmuir-Blodgett Films. Chem Rev 2022; 122:6459-6513. [PMID: 35113523 DOI: 10.1021/acs.chemrev.1c00754] [Citation(s) in RCA: 162] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The Langmuir-Blodgett (LB) technique, through which monolayers are transferred from the air/water interface onto a solid substrate, was the first method to allow for the controlled assembly of organic molecules. With its almost 100 year history, it has been the inspiration for most methods to functionalize surfaces and produce nanocoatings, in addition to serving to explore concepts in molecular electronics and nanoarchitectonics. This paper provides an overview of the history of Langmuir monolayers and LB films, including the potential use in devices and a discussion on why LB films are seldom considered for practical applications today. Emphasis is then given to two areas where these films offer unique opportunities, namely, in mimicking cell membrane models and exploiting nanoarchitectonics concepts to produce sensors, investigate molecular recognitions, and assemble molecular machines. The most promising topics for the short- and long-term prospects of the LB technique are also highlighted.
Collapse
Affiliation(s)
- Osvaldo N Oliveira
- São Carlos Institute of Physics, University of Sao Paulo, CP 369, 13560-970 Sao Carlos, SP, Brazil
| | - Luciano Caseli
- Department of Chemistry, Federal University of São Paulo, 09913-030 Diadema, SP, Brazil
| | - Katsuhiko Ariga
- World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 305-0044 Tsukuba, Japan.,Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-0827, Japan
| |
Collapse
|
7
|
Xu M, Tsona NT, Cheng S, Li J, Du L. Unraveling interfacial properties of organic-coated marine aerosol with lipase incorporation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 782:146893. [PMID: 33848860 DOI: 10.1016/j.scitotenv.2021.146893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/09/2021] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
Marine aerosols are believed to have an organic surface coating on which fatty acids act as an important component due to their high surface activity. In addition, various kinds of enzyme species are abundantly found in seawater, some of which have been identified to exist in marine aerosols. Herein, from the perspective of marine aerosol interface simulation, we investigate the effect of Burkholderia cepacia lipase on the surface properties of stearic acid (SA) monolayer at the air-water interface by using surface-sensitive techniques of Langmuir trough and Infrared reflection-absorption spectroscopy (IRRAS). Our findings indicate that the stearic acid film undergoes a significant expansion, especially when the lipase concentration is 500 nM, because of the incorporation of lipase as observed from the surface pressure-area (π-A) isotherms. IRRAS spectra also show reduced intensities and ordering in the methylene stretching vibration region of stearic acid as a result of low surface density and disordered packing as the enzyme concentration increases. In particular, when the concentration of lipase is 500 nM, the lowest Ias/Is values are shown on both pure water subphase and artificial seawater subphase, indicating more gauche conformations for SA. Furthermore, SA films with lipase incorporation were also studied at three different pH of subphase environment, considering the decrease of pH caused by the reaction with acidic gases during the aerosol aging process. The results reflect a more pronounced expansion of SA monolayer in acidic environment at pH 2.5, suggesting that hydrophobic interaction plays an important role in the disorder of the SA monolayer. In view of the coexistence of fatty acids and enzymes in the marine environment, this study provides a further understanding of the surface organization and behavior of organic-coated marine aerosols and deepen the knowledge of lipid-enzyme interfacial interactions occurring in the atmosphere.
Collapse
Affiliation(s)
- Minglan Xu
- Environment Research Institute, Shandong University, Binhai Road 72, Qingdao 266237, China
| | - Narcisse T Tsona
- Environment Research Institute, Shandong University, Binhai Road 72, Qingdao 266237, China
| | - Shumin Cheng
- Environment Research Institute, Shandong University, Binhai Road 72, Qingdao 266237, China
| | - Jianlong Li
- Environment Research Institute, Shandong University, Binhai Road 72, Qingdao 266237, China
| | - Lin Du
- Environment Research Institute, Shandong University, Binhai Road 72, Qingdao 266237, China.
| |
Collapse
|
8
|
Godard J, Chapron D, Bregier F, Rosilio V, Sol V. Synthesis and supramolecular arrangement of new stearoyl acid-based phenalenone derivatives. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
9
|
Rodrigues RT, Siqueira JR, Caseli L. Structural and viscoelastic properties of floating monolayers of a pectinolytic enzyme and their influence on the catalytic properties. J Colloid Interface Sci 2021; 589:568-577. [PMID: 33497895 DOI: 10.1016/j.jcis.2021.01.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/28/2020] [Accepted: 01/10/2021] [Indexed: 11/18/2022]
Abstract
HYPOTHESIS The catalytic activity of enzymes immobilized in self-assembly systems as Langmuir-Blodgett (LB) films is influenced by molecular interactions dictated by the composition and viscoelasticity of the previous floating monolayers. We believe that the insertion of carbon nanotubes (CNT) in mixed polygalacturonase/lipid monolayers may influence intermolecular interactions and viscoelastic properties, being then possible to tune system stability and rheological properties, driving catalytic properties of the films for biosensing. EXPERIMENTS The physicochemical properties of the monolayers were investigated by tensiometry, surface potential, Brewster angle microscopy, infrared spectroscopy, and dilatational rheology. The monolayers were transferred to solid supports LB films and characterized by atomic force microscopy, quartz crystal microbalance, and fluorescence spectroscopy. The catalytic activity of the LB films was verified by colorimetric assay. FINDINGS The enzyme-CNT-lipid film had a catalytic activity at least twice as high as the pure enzyme owing to the synergy between the components, with the lipid acting as a protector matrix for the enzyme and the CNTs acting as an energy transfer facilitator. These results point to a proof-of-concept system, through which we can propose an alternative to achieve enhanced bio-inspired films with high control of the molecular architecture by using the LB approach.
Collapse
Affiliation(s)
- Raul T Rodrigues
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo (UNIFESP), 09913-030 Diadema, SP, Brazil
| | - José R Siqueira
- Laboratory of Applied Nanomaterials and Nanostructures (LANNA), Institute of Exact Sciences, Natural and Education, Federal University of Triângulo Mineiro (UFTM), 38064-200 Uberaba, MG, Brazil.
| | - Luciano Caseli
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo (UNIFESP), 09913-030 Diadema, SP, Brazil.
| |
Collapse
|
10
|
Nunes JCF, Cristóvão RO, Freire MG, Santos-Ebinuma VC, Faria JL, Silva CG, Tavares APM. Recent Strategies and Applications for l-Asparaginase Confinement. Molecules 2020; 25:E5827. [PMID: 33321857 PMCID: PMC7764279 DOI: 10.3390/molecules25245827] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/03/2020] [Accepted: 12/06/2020] [Indexed: 12/22/2022] Open
Abstract
l-asparaginase (ASNase, EC 3.5.1.1) is an aminohydrolase enzyme with important uses in the therapeutic/pharmaceutical and food industries. Its main applications are as an anticancer drug, mostly for acute lymphoblastic leukaemia (ALL) treatment, and in acrylamide reduction when starch-rich foods are cooked at temperatures above 100 °C. Its use as a biosensor for asparagine in both industries has also been reported. However, there are certain challenges associated with ASNase applications. Depending on the ASNase source, the major challenges of its pharmaceutical application are the hypersensitivity reactions that it causes in ALL patients and its short half-life and fast plasma clearance in the blood system by native proteases. In addition, ASNase is generally unstable and it is a thermolabile enzyme, which also hinders its application in the food sector. These drawbacks have been overcome by the ASNase confinement in different (nano)materials through distinct techniques, such as physical adsorption, covalent attachment and entrapment. Overall, this review describes the most recent strategies reported for ASNase confinement in numerous (nano)materials, highlighting its improved properties, especially specificity, half-life enhancement and thermal and operational stability improvement, allowing its reuse, increased proteolysis resistance and immunogenicity elimination. The most recent applications of confined ASNase in nanomaterials are reviewed for the first time, simultaneously providing prospects in the described fields of application.
Collapse
Affiliation(s)
- João C. F. Nunes
- Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua do Dr. Roberto Frias, 4200-465 Porto, Portugal; (J.C.F.N.); (R.O.C.); (J.L.F.)
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Raquel O. Cristóvão
- Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua do Dr. Roberto Frias, 4200-465 Porto, Portugal; (J.C.F.N.); (R.O.C.); (J.L.F.)
| | - Mara G. Freire
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Valéria C. Santos-Ebinuma
- School of Pharmaceutical Sciences, Universidade Estadual Paulista-UNESP, Araraquara 14800-903, Brazil;
| | - Joaquim L. Faria
- Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua do Dr. Roberto Frias, 4200-465 Porto, Portugal; (J.C.F.N.); (R.O.C.); (J.L.F.)
| | - Cláudia G. Silva
- Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua do Dr. Roberto Frias, 4200-465 Porto, Portugal; (J.C.F.N.); (R.O.C.); (J.L.F.)
| | - Ana P. M. Tavares
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal;
| |
Collapse
|
11
|
Cristóvão RO, Almeida MR, Barros MA, Nunes JCF, Boaventura RAR, Loureiro JM, Faria JL, Neves MC, Freire MG, Ebinuma-Santos VC, Tavares APM, Silva CG. Development and characterization of a novel l-asparaginase/MWCNT nanobioconjugate. RSC Adv 2020; 10:31205-31213. [PMID: 35520670 PMCID: PMC9056397 DOI: 10.1039/d0ra05534d] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/10/2020] [Indexed: 11/21/2022] Open
Abstract
The enzyme l-asparaginase (ASNase) presents effective antineoplastic properties used for acute lymphoblastic leukemia treatment besides their potential use in the food sector to decrease the acrylamide formation. Considering their applications, the improvement of this enzyme's properties by efficient immobilization techniques is in high demand. Carbon nanotubes are promising enzyme immobilization supports, since these materials have increased surface area and effective capacity for enzyme loading. Accordingly, in this study, multi-walled carbon nanotubes (MWCNTs) were explored as novel supports for ASNase immobilization by a simple adsorption method. The effect of pH and contact time of immobilization, as well as the ASNase to nanoparticles mass ratio, were optimized according to the enzyme immobilization yield and relative recovered activity. The enzyme–MWCNTs bioconjugation was confirmed by thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), Raman and transmission electron microscopy (TEM) studies. MWCNTs have a high ASNase loading capacity, with a maximum immobilization yield of 90%. The adsorbed ASNase retains 90% of the initial enzyme activity at the optimized conditions (pH 8.0, 60 min, and 1.5 × 10−3 g mL−1 of ASNase). According to these results, ASNase immobilized onto MWCNTs can find improved applications in several areas, namely biosensors, medicine and food industry. l-Asparaginase immobilization by adsorption over MWCNTs for potential application in pharmaceutical and food industries.![]()
Collapse
|