1
|
Ni F, Chen Y, Wang Z, Zhang X, Gao F, Shao Z, Wang H. Graphene derivative based hydrogels in biomedical applications. J Tissue Eng 2024; 15:20417314241282131. [PMID: 39430737 PMCID: PMC11490963 DOI: 10.1177/20417314241282131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/24/2024] [Indexed: 10/22/2024] Open
Abstract
Graphene and its derivatives are widely used in tissue-engineering scaffolds, especially in the form of hydrogels. This is due to their biocompatibility, electrical conductivity, high surface area, and physicochemical versatility. They are also used in tissue engineering. Tissue engineering is suitable for 3D printing applications, and 3D printing makes it possible to construct 3D structures from 2D graphene, which is a revolutionary technology with promising applications in tissue and organ engineering. In this review, the recent literature in which graphene and its derivatives have been used as the major components of hydrogels is summarized. The application of graphene and its derivative-based hydrogels in tissue engineering is described in detail from different perspectives.
Collapse
Affiliation(s)
- Feifei Ni
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yangyang Chen
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ze Wang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Gao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zengwu Shao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Wang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Current Advances in the Development of Hydrogel-Based Wound Dressings for Diabetic Foot Ulcer Treatment. Polymers (Basel) 2022; 14:polym14142764. [PMID: 35890541 PMCID: PMC9320667 DOI: 10.3390/polym14142764] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/10/2022] [Accepted: 06/21/2022] [Indexed: 02/06/2023] Open
Abstract
Diabetic foot ulcers (DFUs) are one of the most prevalent complications associated with diabetes mellitus. DFUs are chronic injuries that often lead to non-traumatic lower extremity amputations, due to persistent infection and other ulcer-related side effects. Moreover, these complications represent a significant economic burden for the healthcare system, as expensive medical interventions are required. In addition to this, the clinical treatments that are currently available have only proven moderately effective, evidencing a great need to develop novel strategies for the improved treatment of DFUs. Hydrogels are three-dimensional systems that can be fabricated from natural and/or synthetic polymers. Due to their unique versatility, tunability, and hydrophilic properties, these materials have been extensively studied for different types of biomedical applications, including drug delivery and tissue engineering applications. Therefore, this review paper addresses the most recent advances in hydrogel wound dressings for effective DFU treatment, providing an overview of current perspectives and challenges in this research field.
Collapse
|
3
|
Oliveira AML, Machado M, Silva GA, Bitoque DB, Tavares Ferreira J, Pinto LA, Ferreira Q. Graphene Oxide Thin Films with Drug Delivery Function. NANOMATERIALS 2022; 12:nano12071149. [PMID: 35407267 PMCID: PMC9000550 DOI: 10.3390/nano12071149] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 02/04/2023]
Abstract
Graphene oxide has been used in different fields of nanomedicine as a manager of drug delivery due to its inherent physical and chemical properties that allow its use in thin films with biomedical applications. Several studies demonstrated its efficacy in the control of the amount and the timely delivery of drugs when it is incorporated in multilayer films. It has been demonstrated that oxide graphene layers are able to work as drug delivery or just to delay consecutive drug dosage, allowing the operation of time-controlled systems. This review presents the latest research developments of biomedical applications using graphene oxide as the main component of a drug delivery system, with focus on the production and characterization of films, in vitro and in vivo assays, main applications of graphene oxide biomedical devices, and its biocompatibility properties.
Collapse
Affiliation(s)
- Alexandra M. L. Oliveira
- Instituto de Telecomunicações, Avenida Rovisco Pais, 1049-001 Lisbon, Portugal;
- iNOVA4Health, CEDOC Chronic Diseases Research Centre, NOVA Medical School, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisboa, Portugal; (G.A.S.); (D.B.B.)
- NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1169-056 Lisbon, Portugal
- Correspondence: (A.M.L.O.); (Q.F.)
| | - Mónica Machado
- Instituto de Telecomunicações, Avenida Rovisco Pais, 1049-001 Lisbon, Portugal;
- iNOVA4Health, CEDOC Chronic Diseases Research Centre, NOVA Medical School, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisboa, Portugal; (G.A.S.); (D.B.B.)
- NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1169-056 Lisbon, Portugal
| | - Gabriela A. Silva
- iNOVA4Health, CEDOC Chronic Diseases Research Centre, NOVA Medical School, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisboa, Portugal; (G.A.S.); (D.B.B.)
- NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1169-056 Lisbon, Portugal
| | - Diogo B. Bitoque
- iNOVA4Health, CEDOC Chronic Diseases Research Centre, NOVA Medical School, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisboa, Portugal; (G.A.S.); (D.B.B.)
- NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1169-056 Lisbon, Portugal
| | - Joana Tavares Ferreira
- Ophthalmology Department, Centro Hospitalar Universitário de Lisboa Norte, 1649-035 Lisbon, Portugal; (J.T.F.); (L.A.P.)
- Visual Sciences Study Centre, Faculty of Medicine, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Luís Abegão Pinto
- Ophthalmology Department, Centro Hospitalar Universitário de Lisboa Norte, 1649-035 Lisbon, Portugal; (J.T.F.); (L.A.P.)
- Visual Sciences Study Centre, Faculty of Medicine, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Quirina Ferreira
- Instituto de Telecomunicações, Avenida Rovisco Pais, 1049-001 Lisbon, Portugal;
- Correspondence: (A.M.L.O.); (Q.F.)
| |
Collapse
|
4
|
Li J, Zeng H, Zeng Z, Zeng Y, Xie T. Promising Graphene-Based Nanomaterials and Their Biomedical Applications and Potential Risks: A Comprehensive Review. ACS Biomater Sci Eng 2021; 7:5363-5396. [PMID: 34747591 DOI: 10.1021/acsbiomaterials.1c00875] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Graphene-based nanomaterials (GBNs) have been the subject of research focus in the scientific community because of their excellent physical, chemical, electrical, mechanical, thermal, and optical properties. Several studies have been conducted on GBNs, and they have provided a detailed review and summary of various applications. However, comprehensive comments on biomedical applications and potential risks and strategies to reduce toxicity are limited. In this review, we systematically summarized the following aspects of GBNs in order to fill the gaps: (1) the history, synthesis methods, structural characteristics, and surface modification; (2) the latest advances in biomedical applications (including drug/gene delivery, biosensors, bioimaging, tissue engineering, phototherapy, and antibacterial activity); and (3) biocompatibility, potential risks (toxicity in vivo/vitro and effects on human health and the environment), and strategies to reduce toxicity. Moreover, we have analyzed the challenges to be overcome in order to enhance application of GBNs in the biomedical field.
Collapse
Affiliation(s)
- Jie Li
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China.,School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang 311121, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, Zhejiang 311121, China
| | - Huamin Zeng
- Chengdu Ping An Healthcare Medical Examination Laboratory, Chengdu, Sichuan 611130, China
| | - Zhaowu Zeng
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang 311121, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, Zhejiang 311121, China
| | - Yiying Zeng
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang 311121, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, Zhejiang 311121, China
| | - Tian Xie
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China.,School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang 311121, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, Zhejiang 311121, China
| |
Collapse
|
5
|
Guo B, Qiao F, Liao Y, Song L, He J. Triptolide laden reduced graphene oxide transdermal hydrogel to manage knee arthritis: in vitro and in vivo studies. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 32:1288-1300. [PMID: 33797338 DOI: 10.1080/09205063.2021.1912976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Triptolide (extract of herb Tripterygium wilfordii) is widely used in rheumatoid arthritis due to its potent immunosuppressant effect. The marketed oral (tablet dosage forms) and parenteral injections have short duration of action (half-life = 38 min) and not limited to multiorgan toxicity, which restrict the use of triptolide in clinical practice. In this study, a triptolide-loaded Pluronic® F68-reduced graphene oxide transdermal (non-invasive) hydrogel was developed to achieve sustained release of triptolide. Fourier transform infrared spectroscopy, X-ray diffraction, and Raman spectroscopy confirmed the synthesis of Pluronic® F68-reduced graphene oxide. Transmission electron microscopy showed flat wrinkled-nanosheets. The developed hydrogel showed desirable viscosity (11,261-11,365 cps), adhesiveness (0.25 mJ), hardness (6.5 g), and cohesiveness (1.85) for transdermal application. The ex vivo release study demonstrated the ability of the Pluronic® F68-reduced graphene oxide hydrogel to prolong release up to 14 h (63.64-96.78%), owing to the strong π-π interactions between the graphene oxide and the triptolide. The in vivo pharmacokinetic parameters in the rat model confirmed the improvement in the relative bioavailability (3.3-fold) with Pluronic® F68-reduced graphene oxide hydrogel in comparison to the control hydrogel without reduced graphene oxide. The anti-rheumatoid efficacy model suggest the potential application of Pluronic® F68-reduced graphene oxide hydrogel to treat knee rheumatoid arthritis (70-75% resolution) to substitute tablets and parenteral injections.
Collapse
Affiliation(s)
- Binghua Guo
- Department of Orthopedics combined TCM with Western Medicine, Honghui Hospital, Xi'an Jiaotong University, No. 555 Youyi East Road, Beilin, Xi'an, Shaanxi, 710054, China
| | - Feng Qiao
- Department of Orthopedics combined TCM with Western Medicine, Honghui Hospital, Xi'an Jiaotong University, No. 555 Youyi East Road, Beilin, Xi'an, Shaanxi, 710054, China
| | - Yonghua Liao
- Department of Orthopedics combined TCM with Western Medicine, Honghui Hospital, Xi'an Jiaotong University, No. 555 Youyi East Road, Beilin, Xi'an, Shaanxi, 710054, China
| | - Lianjin Song
- Department of Traditional Chinese Medicine, High-Tech Hospital, Xi'an, Shaanxi, China
| | - Jinlong He
- Department of Orthopedics combined TCM with Western Medicine, Honghui Hospital, Xi'an Jiaotong University, No. 555 Youyi East Road, Beilin, Xi'an, Shaanxi, 710054, China
| |
Collapse
|
6
|
Jampilek J, Kralova K. Advances in Drug Delivery Nanosystems Using Graphene-Based Materials and Carbon Nanotubes. MATERIALS (BASEL, SWITZERLAND) 2021; 14:1059. [PMID: 33668271 PMCID: PMC7956197 DOI: 10.3390/ma14051059] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 02/07/2023]
Abstract
Carbon is one of the most abundant elements on Earth. In addition to the well-known crystallographic modifications such as graphite and diamond, other allotropic carbon modifications such as graphene-based nanomaterials and carbon nanotubes have recently come to the fore. These carbon nanomaterials can be designed to help deliver or target drugs more efficiently and to innovate therapeutic approaches, especially for cancer treatment, but also for the development of new diagnostic agents for malignancies and are expected to help combine molecular imaging for diagnosis with therapies. This paper summarizes the latest designed drug delivery nanosystems based on graphene, graphene quantum dots, graphene oxide, reduced graphene oxide and carbon nanotubes, mainly for anticancer therapy.
Collapse
Affiliation(s)
- Josef Jampilek
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska Cesta 9, 845 10 Bratislava, Slovakia
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Katarina Kralova
- Institute of Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia;
| |
Collapse
|
7
|
Zhang W, Zhao X, Yu G, Suo M. Optimization of propofol loaded niosomal gel for transdermal delivery. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 32:858-873. [PMID: 33538243 DOI: 10.1080/09205063.2021.1877064] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Propofol is an oily liquid widely used for rapid onset of anaesthesia via intravenous route, which shows major limitations of hypersensitivity, anaphylactic reactions and pain. The aim of the present work was to bypass the above issues by formulating tailored niosomal gel to deliver propofol via non-invasive transdermal route. The niosomes were prepared by film hydration method and sonication using cholesterol and Span 80. The Box Behnken design (BBD) was applied to optimize the size (93.5 nm) and the entrapment efficacy (81.5%) of the niosomes by selecting cholesterol at 139 mg, Span 80 at 0.525% and sonication time at 5.13 min. The scanning electron microscopy image showed spherical shape niosomes with smooth surface without aggregation. The ex vivo release data showed significant improvement in the propofol release (92.2% after 10 h) using niosomes in comparison to the control propofol gel (with 30% methanol) without niosomes (25.3% after 10 h). The in vivo pharmacokinetic parameters in the rat model confirmed the improvement in the relative bioavailability with optimized niosomal gel (relative bioavailability = 12.12) in comparison to the control propofol gel. In conclusion, the niosomal gel offered a potential alternative non-invasive route to deliver propofol for procedural sedation especially in pediatric population.
Collapse
Affiliation(s)
- Wenjia Zhang
- Department of Anesthesiology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xu Zhao
- Department of Anesthesiology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Guanling Yu
- IVF laboratory, Center for Reproductive Medicine, Shandong University, Jinan, Shandong, China
| | - Meng Suo
- Department of Anesthesiology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
8
|
A Review on Recent Advancements of Graphene and Graphene-Related Materials in Biological Applications. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11020614] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Graphene is the most outstanding material among the new nanostructured carbonaceous species discovered and produced. Graphene’s astonishing properties (i.e., electronic conductivity, mechanical robustness, large surface area) have led to a deep change in the material science field. In this review, after a brief overview of the main characteristics of graphene and related materials, we present an extensive overview of the most recent achievements in biological uses of graphene and related materials.
Collapse
|
9
|
Luo S, Jin S, Yang T, Wu B, Xu C, Luo L, Chen Y. Sustained release of tulobuterol from graphene oxide laden hydrogel to manage asthma. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 32:524-535. [PMID: 33175639 DOI: 10.1080/09205063.2020.1849921] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Bronchial asthma is a chronic disease which is currently treated using various inhalants. However, the medication adherence with the inhalants is poor due to complex procedure to use them along with frequent dosing. In this paper, we have developed tulobuterol loaded Pluronic® F127-reduced graphene oxide transdermal hydrogel to sustain the release of tulobuterol to manage asthma for days. The synthesis of Pluronic® F127-reduced graphene oxide was confirmed by Fourier transform infrared spectroscopy, X-ray diffraction, and Raman spectroscopy. The transmission electron microscope showed wrinkled flat nano sheets. The hydrogel showed sufficient mechanical properties for topical application and was safe in the skin irritation study (rabbit model). The ex vivo release data demonstrated the ability of reduced graphene oxide to sustain the release of tulobuterol for 72 h, due to strong π-π interaction between drug and graphene oxide. The pharmacokinetic profile in Sprague-Dawley rat model confirmed the potential of tulobuterol-Pluronic® F127-reduced graphene oxide hydrogel to sustain the release of tulobuterol for effective management of asthma.
Collapse
Affiliation(s)
- Shujuan Luo
- Respiratory Department, Hunan Children's Hospital, Changsha, Hunan, China
| | - Shijie Jin
- Respiratory Department, Hunan Children's Hospital, Changsha, Hunan, China
| | - Ting Yang
- Respiratory Department, Hunan Children's Hospital, Changsha, Hunan, China
| | - Bichen Wu
- Respiratory Department, Hunan Children's Hospital, Changsha, Hunan, China
| | - Chang Xu
- Respiratory Department, Hunan Children's Hospital, Changsha, Hunan, China
| | - Liyan Luo
- Respiratory Department, Hunan Children's Hospital, Changsha, Hunan, China
| | - Yanping Chen
- Respiratory Department, Hunan Children's Hospital, Changsha, Hunan, China
| |
Collapse
|