1
|
Sanchez Armengol E, Sánchez Soler LA, Valverde Offermann N, Laffleur F. Polymer powerhouse: Methyl methacrylate - A breakthrough blend for superior adhesion to gingiva. Dent Mater 2024; 40:2101-2113. [PMID: 39424527 DOI: 10.1016/j.dental.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/01/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024]
Abstract
The goal of this study was to develop a new poly(methyl methacrylate) (PMMA)-based conjugate with enhanced mucoadhesive features for gingiva. Five MMA-based conjugates with varying amounts of hydroxyethyl maleimide (HEM) and poly(ethylene glycol) (PEG) were synthesized and characterized using infrared spectroscopy and proton nuclear magnetic resonance. Quantification of attached HEM and PEG was performed using assay kits and established protocols. Mucoadhesiveness was tested through rheological measurements, retention time, and tensile strength studies. Results showed successful unification of MMA with HEM and PEG, with varying degrees of modification and no toxic effects. Dynamic viscosity was enhanced up to 13-fold for MMA-100Mal, decreasing incrementally for MMA-75Mal, MMA-50Mal, MMA-25Mal, and MMA-0Mal. Retention time improved up to 120-fold for MMA-100Mal, decreasing to 37.5-fold for MMA-0Mal. Mucoadhesiveness followed the order: MMA-100Mal > MMA-75Mal > MMA-50Mal > MMA-25Mal > MMA-0Mal. In conclusion, the novel modification of MMA with increased mucoadhesive features to buccal gingiva suggests its potential as a long-term total denture base material, paving the way for more patient-friendly prostheses.
Collapse
Affiliation(s)
- Eva Sanchez Armengol
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria
| | - Luis Alberto Sánchez Soler
- Faculty of Medicine and Health Sciences, Department of Odontostomatology, University of Barcelona, Barcelona, Spain
| | - Noah Valverde Offermann
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria
| | - Flavia Laffleur
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
2
|
Coronado S, Herrera J, Pino MG, Martín S, Ballesteros-Rueda L, Cea P. Advancements in Engineering Planar Model Cell Membranes: Current Techniques, Applications, and Future Perspectives. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1489. [PMID: 39330645 PMCID: PMC11434481 DOI: 10.3390/nano14181489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/28/2024] [Accepted: 09/05/2024] [Indexed: 09/28/2024]
Abstract
Cell membranes are crucial elements in living organisms, serving as protective barriers and providing structural support for cells. They regulate numerous exchange and communication processes between cells and their environment, including interactions with other cells, tissues, ions, xenobiotics, and drugs. However, the complexity and heterogeneity of cell membranes-comprising two asymmetric layers with varying compositions across different cell types and states (e.g., healthy vs. diseased)-along with the challenges of manipulating real cell membranes represent significant obstacles for in vivo studies. To address these challenges, researchers have developed various methodologies to create model cell membranes or membrane fragments, including mono- or bilayers organized in planar systems. These models facilitate fundamental studies on membrane component interactions as well as the interactions of membrane components with external agents, such as drugs, nanoparticles (NPs), or biomarkers. The applications of model cell membranes have extended beyond basic research, encompassing areas such as biosensing and nanoparticle camouflage to evade immune detection. In this review, we highlight advancements in the engineering of planar model cell membranes, focusing on the nanoarchitectonic tools used for their fabrication. We also discuss approaches for incorporating challenging materials, such as proteins and enzymes, into these models. Finally, we present our view on future perspectives in the field of planar model cell membranes.
Collapse
Affiliation(s)
- Sara Coronado
- Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
- Centro de Investigaciones en Catálisis (CICAT), Escuela de Ingeniería Química, Universidad Industrial de Santander, Parque Tecnológico de Guatiguará, Km 2 vía El Refugio, Piedecuesta, Santander 681911, Colombia
| | - Johan Herrera
- Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
- Centro de Investigaciones en Catálisis (CICAT), Escuela de Ingeniería Química, Universidad Industrial de Santander, Parque Tecnológico de Guatiguará, Km 2 vía El Refugio, Piedecuesta, Santander 681911, Colombia
| | - María Graciela Pino
- Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Santiago Martín
- Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Luz Ballesteros-Rueda
- Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
- Centro de Investigaciones en Catálisis (CICAT), Escuela de Ingeniería Química, Universidad Industrial de Santander, Parque Tecnológico de Guatiguará, Km 2 vía El Refugio, Piedecuesta, Santander 681911, Colombia
| | - Pilar Cea
- Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| |
Collapse
|
3
|
Idiago-López J, Ferreira D, Asín L, Moros M, Armenia I, Grazú V, Fernandes AR, de la Fuente JM, Baptista PV, Fratila RM. Membrane-localized magnetic hyperthermia promotes intracellular delivery of cell-impermeant probes. NANOSCALE 2024; 16:15176-15195. [PMID: 39052238 DOI: 10.1039/d4nr01955e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
In this work, we report the disruptive use of membrane-localized magnetic hyperthermia to promote the internalization of cell-impermeant probes. Under an alternating magnetic field, magnetic nanoparticles (MNPs) immobilized on the cell membrane via bioorthogonal click chemistry act as nanoheaters and lead to the thermal disruption of the plasma membrane, which can be used for internalization of different types of molecules, such as small fluorescent probes and nucleic acids. Noteworthily, no cell death, oxidative stress and alterations of the cell cycle are detected after the thermal stimulus, although cells are able to sense and respond to the thermal stimulus through the expression of different types of heat shock proteins (HSPs). Finally, we demonstrate the utility of this approach for the transfection of cells with a small interference RNA (siRNA), revealing a similar efficacy to a standard transfection method based on the use of cationic lipid-based reagents (such as Lipofectamine), but with lower cell toxicity. These results open the possibility of developing new procedures for "opening and closing" cellular membranes with minimal disturbance of cellular integrity. This on-demand modification of cell membrane permeability could allow the direct intracellular delivery of biologically relevant (bio)molecules, drugs and nanomaterials, thus overcoming traditional endocytosis pathways and avoiding endosomal entrapment.
Collapse
Affiliation(s)
- Javier Idiago-López
- Instituto de Nanociencia y Materiales de Aragón, INMA (CSIC-Universidad de Zaragoza), C/Pedro Cerbuna 12, 50009, Zaragoza, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Daniela Ferreira
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal.
- UCIBIO - Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Laura Asín
- Instituto de Nanociencia y Materiales de Aragón, INMA (CSIC-Universidad de Zaragoza), C/Pedro Cerbuna 12, 50009, Zaragoza, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - María Moros
- Instituto de Nanociencia y Materiales de Aragón, INMA (CSIC-Universidad de Zaragoza), C/Pedro Cerbuna 12, 50009, Zaragoza, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Ilaria Armenia
- Instituto de Nanociencia y Materiales de Aragón, INMA (CSIC-Universidad de Zaragoza), C/Pedro Cerbuna 12, 50009, Zaragoza, Spain.
| | - Valeria Grazú
- Instituto de Nanociencia y Materiales de Aragón, INMA (CSIC-Universidad de Zaragoza), C/Pedro Cerbuna 12, 50009, Zaragoza, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Alexandra R Fernandes
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal.
- UCIBIO - Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Jesús M de la Fuente
- Instituto de Nanociencia y Materiales de Aragón, INMA (CSIC-Universidad de Zaragoza), C/Pedro Cerbuna 12, 50009, Zaragoza, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Pedro V Baptista
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal.
- UCIBIO - Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Raluca M Fratila
- Instituto de Nanociencia y Materiales de Aragón, INMA (CSIC-Universidad de Zaragoza), C/Pedro Cerbuna 12, 50009, Zaragoza, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
- Departamento de Química Orgánica, Facultad de Ciencias, C/Pedro Cerbuna 12, 50009, Zaragoza, Spain
| |
Collapse
|
4
|
Dotor L, García-Pinilla JM, Martín S, Cea P. Langmuir and Langmuir-Blodgett technologies as nanoarchitectonic tools for the incorporation of curcumin in membrane systems. NANOSCALE 2023; 15:2891-2903. [PMID: 36691853 DOI: 10.1039/d2nr06631a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Curcumin (CCM) is a molecule of particular interest in health applications due to its wide spectrum of benefits for humans. However, its water-insoluble character and low bioavailability have so far prevented its extended use as a therapeutic agent. Incorporation of CCM in drug delivery vehicles (liposomes, vesicles, exosomes, etc.) is expected to contribute to increasing its bioavailability. Studies of the affinity of CCM with the components of the membrane systems of such vehicles and determination of factors that may enhance curcumin entrapment in biological membranes are of fundamental importance. To that end, here we take advantage of the nanoarchitectonic capabilities of the Langmuir technique for the construction of model cell membranes and determination of thermodynamic properties in mixed films. The obtained results may serve to: (i) provide some light on the miscibility of CCM with the components in the cell membrane and (ii) determine the optimal conditions for the fabrication of membrane systems incorporating CCM. For that, binary and ternary mixed Langmuir films of CCM, DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine) and CHOL (cholesterol) have been prepared. Whilst binary mixtures of DPPC and CCM exhibit poor miscibility and even phase segregation, CHOL has shown itself as a key element to promote the incorporation of CCM in the phospholipidic membrane containing DPPC. Both the thermodynamic studies of the ternary Langmuir films and the Atomic Force Microscopy (AFM) images of Langmuir-Blodgett films have shown that ternary mixed films with a molar fraction composition of xDPPC/xCHOL/xCCM = 0.4/0.4/0.2 exhibit good miscibility, stability, and result in monolayers with a very homogeneous topography.
Collapse
Affiliation(s)
- Laura Dotor
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain.
- Laboratorio de Microscopias Avanzadas (LMA), Universidad de Zaragoza, 50018, Zaragoza, Spain
- Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - José Miguel García-Pinilla
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain.
- Laboratorio de Microscopias Avanzadas (LMA), Universidad de Zaragoza, 50018, Zaragoza, Spain
- Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Santiago Martín
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain.
- Laboratorio de Microscopias Avanzadas (LMA), Universidad de Zaragoza, 50018, Zaragoza, Spain
- Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Pilar Cea
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain.
- Laboratorio de Microscopias Avanzadas (LMA), Universidad de Zaragoza, 50018, Zaragoza, Spain
- Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain
| |
Collapse
|
5
|
|