1
|
Mansouri S. Recent developments of (bio)-sensors for detection of main microbiological and non-biological pollutants in plastic bottled water samples: A critical review. Talanta 2024; 274:125962. [PMID: 38537355 DOI: 10.1016/j.talanta.2024.125962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/27/2024] [Accepted: 03/20/2024] [Indexed: 05/04/2024]
Abstract
The importance of water in all biological processes is undeniable. Ensuring access to clean and safe drinking water is crucial for maintaining sustainable water resources. To elaborate, the consumption of water of inadequate quality can have a repercussion on human health. Furthermore, according to the instability of tap water quality, the consumption rate of bottled water is increasing every day at the global level. Although most people believe bottled water is safe, it can also be contaminated by microbiological or chemical pollution, which can increase the risk of disease. Over the last decades, several conventional analytical tools applied to analyze the contamination of bottled water. On the other hand, some limitations restrict their application in this field. Therefore, biosensors, as emerging analytical method, attract tremendous attention for detection both microbial and chemical contamination of bottled water. Biosensors enjoy several facilities including selectivity, affordability, and sensitivity. In this review, the developed biosensors for analyzing contamination of bottled water were highlighted, as along with working strategies, pros and cons of studies. Challenges and prospects were also examined.
Collapse
Affiliation(s)
- Sofiene Mansouri
- Department of Biomedical Technology, College of Applied Medical Sciences in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia; University of Tunis El Manar, Higher Institute of Medical Technologies of Tunis, Laboratory of Biophysics and Medical Technologies, Tunis, Tunisia.
| |
Collapse
|
2
|
Koguchi R, Jankova K, Tanaka Y, Yamamoto A, Murakami D, Yang Q, Ameduri B, Tanaka M. Altering the bio-inert properties of surfaces by fluorinated copolymers of mPEGMA. BIOMATERIALS ADVANCES 2023; 153:213573. [PMID: 37562157 DOI: 10.1016/j.bioadv.2023.213573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 08/12/2023]
Abstract
Hydrophilic materials display "bio-inert properties", meaning that they are less recognized as foreign substances by proteins and cells. Such materials are often water soluble; therefore, one general approach to enable the use of these materials in various applications deals with copolymerizing hydrophilic monomers with hydrophobic ones to facilitate such resulting copolymers water insoluble. However, reducing the hydrophilic monomer amount may reduce the bio-inert properties of the material. The decrease in bio-inert properties can be avoided when small amounts of fluorine are used in copolymers with hydrophilic monomers, as presented in this article. Even in small quantities (7.9 wt%), the fluorinated monomer, 1,1,1,3,3,3-hexafluoropropan-2-yl 2-fluoroacrylate (FAHFiP), contributed to the improved hydrophobicity of the polymers of the long side-chain poly(ethylene glycol) methyl ether methacrylate (mPEGMA) bearing nine ethylene glycol units turning them water insoluble. As evidenced by the AFM deformation image, a phase separation between the FAHFiP and mPEGMA domains was observed. The copolymer with the highest amount of the fluorinated monomer (66.2 wt%) displayed also high (82 %) FAHFiP amount at the polymer-water interface. In contrast, the hydrated sample with the lowest FAHFiP/highest mPEGMA amount was enriched of three times more hydrophilic domains at the polymer-water interface compared to that of the sample with the highest FAHFiP content. Thus, by adding a small FAHFiP amount to mPEGMA copolymers, water insoluble in the bulk too, could be turned highly hydrophilic at the water interface. The high content of intermediate water contributed to their excellent bio-inert properties. Platelet adhesion and fibrinogen adsorption on their surfaces were even more decreased as compared to those on poly(2-methoxyethyl acrylate), which is typically used in medical devices.
Collapse
Affiliation(s)
- Ryohei Koguchi
- AGC Inc. Organic Materials Division, Materials Integration Laboratories, 1-1 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Katja Jankova
- Soft Materials Chemistry, Institute for Materials Chemistry and Engineering, Kyushu University, Build. CE41, 744 Motooka Nishi-ku, Fukuoka 819-0395, Japan; Department of Energy Conversion and Storage, Technical University of Denmark, Elektrovej, Build. 375, 2800 Kongens Lyngby, Denmark
| | - Yukiko Tanaka
- Soft Materials Chemistry, Institute for Materials Chemistry and Engineering, Kyushu University, Build. CE41, 744 Motooka Nishi-ku, Fukuoka 819-0395, Japan
| | - Aki Yamamoto
- Soft Materials Chemistry, Institute for Materials Chemistry and Engineering, Kyushu University, Build. CE41, 744 Motooka Nishi-ku, Fukuoka 819-0395, Japan
| | - Daiki Murakami
- Soft Materials Chemistry, Institute for Materials Chemistry and Engineering, Kyushu University, Build. CE41, 744 Motooka Nishi-ku, Fukuoka 819-0395, Japan
| | - Qizhi Yang
- University of Montpellier, ICGM, CNRS, ENSCM, 34000 Montpellier, France
| | - Bruno Ameduri
- University of Montpellier, ICGM, CNRS, ENSCM, 34000 Montpellier, France.
| | - Masaru Tanaka
- Soft Materials Chemistry, Institute for Materials Chemistry and Engineering, Kyushu University, Build. CE41, 744 Motooka Nishi-ku, Fukuoka 819-0395, Japan.
| |
Collapse
|
3
|
Rajapriya Inbaraj N, Song S, Chang R, Fujita K, Hayashi T. Investigation of Hydration States of Ionic Liquids by Fourier Transform Infrared Absorption Spectroscopy: Relevance to Stabilization of Protein Molecules. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:2558-2568. [PMID: 36753569 PMCID: PMC9948542 DOI: 10.1021/acs.langmuir.2c02851] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/22/2022] [Indexed: 06/18/2023]
Abstract
Among many kinds of ionic liquids, some hydrated ionic liquids (Hy ILs) have shown an exceptional capability to stabilize protein molecules and maintain their structure and functions over a long period. However, the complex IL-water interaction among these protein-stabilizing Hy ILs has yet to be elucidated clearly. In this work, we investigate the origin of the compatibility of ionic liquid with proteins from the viewpoint of hydration structure. We systematically analyzed the hydrogen-bonding state of water molecules around ionic liquid using Fourier transform infrared absorption (FT-IR) spectroscopy. We found that the native hydrogen-bonding network of water remained relatively unperturbed in the protein-stabilizing ILs. We also observed that the protein-stabilizing ILs have a strong electric field interaction with the surrounding water molecules and this water-IL interaction did not disrupt the water-water hydrogen-bonding interaction. On the other hand, protein-denaturing ILs perturb the hydrogen-bonding network of the water molecules to a greater extent. Furthermore, the protein-denaturing ILs were found to have a weak electric field effect on the water molecules. We speculate that the direct hydrogen bonding of the ILs with water molecules and the strong electric field of the ions lasting several hydration shells while maintaining the relatively unperturbed hydrogen-bonding network of the water molecules play an essential role in protein stabilization.
Collapse
Affiliation(s)
- Navin Rajapriya Inbaraj
- Department
of Materials Science and Engineering, School of Materials Science
and Chemical Technology, Tokyo Institute
of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama-shi, Kanagawa-ken 226-8502, Japan
| | - Subin Song
- Department
of Materials Science and Engineering, School of Materials Science
and Chemical Technology, Tokyo Institute
of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama-shi, Kanagawa-ken 226-8502, Japan
| | - Ryongsok Chang
- Department
of Materials Science and Engineering, School of Materials Science
and Chemical Technology, Tokyo Institute
of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama-shi, Kanagawa-ken 226-8502, Japan
| | - Kyoko Fujita
- Department
of Pathophysiology, Tokyo University of
Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Tomohiro Hayashi
- Department
of Materials Science and Engineering, School of Materials Science
and Chemical Technology, Tokyo Institute
of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama-shi, Kanagawa-ken 226-8502, Japan
| |
Collapse
|
4
|
Kojima C, Suzuki Y, Ikemoto Y, Tanaka M, Matsumoto A. Comparative study of PEG and PEGylated dendrimers in their eutectic mixtures with water analyzed using X-ray diffraction and infrared spectroscopy. Polym J 2022. [DOI: 10.1038/s41428-022-00700-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
5
|
Palai D, Tahara H, Chikami S, Latag GV, Maeda S, Komura C, Kurioka H, Hayashi T. Prediction of Serum Adsorption onto Polymer Brush Films by Machine Learning. ACS Biomater Sci Eng 2022; 8:3765-3772. [PMID: 35905395 DOI: 10.1021/acsbiomaterials.2c00441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Using machine learning based on a random forest (RF) regression algorithm, we attempted to predict the amount of adsorbed serum protein on polymer brush films from the films' physicochemical information and the monomers' chemical structures constituting the films using a RF model. After the training of the RF model using the data of polymer brush films synthesized from five different types of monomers, the model became capable of predicting the amount of adsorbed protein from the chemical structure, physicochemical properties of monomer molecules, and structural parameters (density and thickness of the films). The analysis of the trained RF quantitatively provided the importance of each structural parameter and physicochemical properties of monomers toward serum protein adsorption (SPA). The ranking for the significance of the parameters agrees with our general understanding and perception. Based on the results, we discuss the correlation between brush film's physical properties (such as thickness and density) and SPA and attempt to provide a guideline for the design of antibiofouling polymer brush films.
Collapse
Affiliation(s)
- Debabrata Palai
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-Cho Midori-Ku, Yokohama, Kanagawa 226-8502, Japan
| | - Hiroyuki Tahara
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-Cho Midori-Ku, Yokohama, Kanagawa 226-8502, Japan
| | - Shunta Chikami
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-Cho Midori-Ku, Yokohama, Kanagawa 226-8502, Japan
| | - Glenn Villena Latag
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-Cho Midori-Ku, Yokohama, Kanagawa 226-8502, Japan
| | - Shoichi Maeda
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-Cho Midori-Ku, Yokohama, Kanagawa 226-8502, Japan
| | - Chisato Komura
- Research Institute for Advanced Materials and Devices, Kyocera Corporation, 3-5-3 Hikaridai, Seika-Cho, Soraku-gun, Kyoto 619-0237, Japan
| | - Hideharu Kurioka
- Research Institute for Advanced Materials and Devices, Kyocera Corporation, 3-5-3 Hikaridai, Seika-Cho, Soraku-gun, Kyoto 619-0237, Japan
| | - Tomohiro Hayashi
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-Cho Midori-Ku, Yokohama, Kanagawa 226-8502, Japan.,The Institute for Solid State Physics, the University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba, 277-0882, Japan
| |
Collapse
|
6
|
Nishida K, Anada T, Tanaka M. Roles of interfacial water states on advanced biomedical material design. Adv Drug Deliv Rev 2022; 186:114310. [PMID: 35487283 DOI: 10.1016/j.addr.2022.114310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/12/2022] [Accepted: 04/21/2022] [Indexed: 12/15/2022]
Abstract
When biomedical materials come into contact with body fluids, the first reaction that occurs on the material surface is hydration; proteins are then adsorbed and denatured on the hydrated material surface. The amount and degree of denaturation of adsorbed proteins affect subsequent cell behavior, including cell adhesion, migration, proliferation, and differentiation. Biomolecules are important for understanding the interactions and biological reactions of biomedical materials to elucidate the role of hydration in biomedical materials and their interaction partners. Analysis of the water states of hydrated materials is complicated and remains controversial; however, knowledge about interfacial water is useful for the design and development of advanced biomaterials. Herein, we summarize recent findings on the hydration of synthetic polymers, supramolecular materials, inorganic materials, proteins, and lipid membranes. Furthermore, we present recent advances in our understanding of the classification of interfacial water and advanced polymer biomaterials, based on the intermediate water concept.
Collapse
Affiliation(s)
- Kei Nishida
- Institute for Materials Chemistry and Engineering Kyushu university, 744 Motooka, Nishi-ku Fukuoka 819-0395, Japan; Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, Japan(1)
| | - Takahisa Anada
- Institute for Materials Chemistry and Engineering Kyushu university, 744 Motooka, Nishi-ku Fukuoka 819-0395, Japan
| | - Masaru Tanaka
- Institute for Materials Chemistry and Engineering Kyushu university, 744 Motooka, Nishi-ku Fukuoka 819-0395, Japan.
| |
Collapse
|
7
|
Mabrouk M, Beherei HH, Tanaka Y, Tanaka M. Sol-gel silicate glass doped with silver for bone regeneration: Antibacterial activity, intermediate water, and cell death mode. BIOMATERIALS ADVANCES 2022; 138:212965. [PMID: 35913231 DOI: 10.1016/j.bioadv.2022.212965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 05/21/2022] [Accepted: 05/28/2022] [Indexed: 06/15/2023]
Abstract
The hydration state of bioactive glass materials and its relationship with their biocompatibility have been receiving attention. In this research, silver-containing bioactive glasses (BGAgs) (Ag contents of 0.25, 0.5, and 1.0% in the glass system) were developed using the sol-gel method. Their physicochemical properties, size, morphology, and surface area were characterized by conducting X-rays diffraction (XRD), Fourier transform infrared (FTIR), Transmission electron microscopy (TEM), and Brunauer-Emmett-Teller (BET) surface area analyses. The surface charges of the developed BGAgs were evaluated using the Nano Zetasizer. Moreover, the antibacterial activities and intermediate water (IW) contents of hydrated BGAgs were determined. Finally, BGAgs disks were tested against osteosarcoma (MG63) cell line to evaluate their death modes. The physicochemical characteristics of the BGAgs revealed no modifications after Ag doping. In comparison, relative changes were recorded in the particle size (20-33 to 16-29 nm), surface area (4.3 to 3.7 m2/g), and particle charge (-24 to -14.6 mV). Doping the current glass system with silver produced impressive amounts of IW, consistent with recorded proliferation rates of the cells when treated with BGAgs. The determined hydration states correlated with other findings in this research might be helpful in predicting and assessing the biological behaviors of BGAgs.
Collapse
Affiliation(s)
- Mostafa Mabrouk
- Refractories, Ceramics and Building materials Department, National Research Centre, 33El Bohouth St. (former EL Tahrir St.), Dokki, P.O.12622, Giza, Egypt.
| | - Hanan H Beherei
- Refractories, Ceramics and Building materials Department, National Research Centre, 33El Bohouth St. (former EL Tahrir St.), Dokki, P.O.12622, Giza, Egypt
| | - Yukiko Tanaka
- Institute for Materials Chemistry and Engineering, Kyushu University, 744, Moto-oka, Nishi-ku, Fukuoka, Japan
| | - Masaru Tanaka
- Institute for Materials Chemistry and Engineering, Kyushu University, 744, Moto-oka, Nishi-ku, Fukuoka, Japan.
| |
Collapse
|
8
|
Shiomoto S, Inoue K, Higuchi H, Nishimura SN, Takaba H, Tanaka M, Kobayashi M. Characterization of Hydration Water Bound to Choline Phosphate-Containing Polymers. Biomacromolecules 2022; 23:2999-3008. [PMID: 35736642 DOI: 10.1021/acs.biomac.2c00484] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Zwitterionic methacrylate polymers with either choline phosphate (CP) (poly(MCP)) or phosphorylcholine (PC) (poly(MPC)) side groups were analyzed to characterize the bound hydration water molecules as nonfreezing water (NFW), intermediate water (IW), or free water (FW). This characterization was carried out by differential scanning calorimetry (DSC) of polymer/water systems, and the enthalpy changes of cold crystallization and melting were determined. The electron pair orientation of CP is opposite to that of PC, and the former binds the alkyl terminal groups at the phosphate esters. The numbers of NFW and IW molecules per monomer unit of poly(MCP) with an isopropyl terminal group were estimated to be 10.7 and 11.3 mol/mol, respectively, which were slightly greater than those of the poly(MCP) bearing an ethyl terminal group. More NFW and IW molecules hydrated the phosphobetaine polyzwitterions, poly(MCP) and poly(MPC), compared with carboxybetaine and sulfobetaine polymers. Moreover, the hydration states of polyelectrolytes were compared with the zwitterionic polymers. Finally, we discuss the relationship between the amount of hydration water and bio-inert properties.
Collapse
Affiliation(s)
- Shohei Shiomoto
- Graduate School of Engineering, Kogakuin University, Tokyo 192-0015, Japan
| | - Kaito Inoue
- Graduate School of Engineering, Kogakuin University, Tokyo 192-0015, Japan
| | - Hayato Higuchi
- Graduate School of Engineering, Kogakuin University, Tokyo 192-0015, Japan
| | - Shin-Nosuke Nishimura
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Hiromitsu Takaba
- School of Advanced Engineering, Kogakuin University, Tokyo 192-0015, Japan
| | - Masaru Tanaka
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Motoyasu Kobayashi
- School of Advanced Engineering, Kogakuin University, Tokyo 192-0015, Japan
| |
Collapse
|
9
|
GEMMEI-IDE M, KAGAYA S. Mid-infrared Spectroscopic Analysis of Water Structure in Solid Polymers. BUNSEKI KAGAKU 2022. [DOI: 10.2116/bunsekikagaku.71.235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Maeda S, Chikami S, Latag GV, Song S, Iwakiri N, Hayashi T. Analysis of Vicinal Water in Soft Contact Lenses Using a Combination of Infrared Absorption Spectroscopy and Multivariate Curve Resolution. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27072130. [PMID: 35408526 PMCID: PMC9000845 DOI: 10.3390/molecules27072130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/17/2022] [Accepted: 03/23/2022] [Indexed: 11/16/2022]
Abstract
In this paper, we propose a new spectroscopic method to explore the behavior of molecules near polymeric molecular networks of water-containing soft materials such as hydrogels. We demonstrate the analysis of hydrogen bonding states of water in the vicinity of hydrogels (soft contact lenses). In this method, we apply force to hydrated contact lenses to deform them and to modulate the ratio between the signals from bulk and vicinal regions. We then collect spectra at different forces. Finally, we extracted the spectra of the vicinal region using the multivariate curve resolution-alternating least square (MCR-ALS) method. We report the hydration states depending on the chemical structures of hydrogels constituting the contact lenses.
Collapse
Affiliation(s)
- Shoichi Maeda
- Department of Material Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-Cho Midori-Ku, Yokohama 226-8502, Japan; (S.M.); (S.C.); (G.V.L.); (S.S.)
| | - Shunta Chikami
- Department of Material Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-Cho Midori-Ku, Yokohama 226-8502, Japan; (S.M.); (S.C.); (G.V.L.); (S.S.)
| | - Glenn Villena Latag
- Department of Material Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-Cho Midori-Ku, Yokohama 226-8502, Japan; (S.M.); (S.C.); (G.V.L.); (S.S.)
| | - Subin Song
- Department of Material Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-Cho Midori-Ku, Yokohama 226-8502, Japan; (S.M.); (S.C.); (G.V.L.); (S.S.)
| | - Norio Iwakiri
- Life Science Products Division, NOF Corporation, Yebisu Garden Place Tower, 20-3 Ebisu 4-Chome, Shibuya-Ku, Tokyo 150-6019, Japan;
| | - Tomohiro Hayashi
- Department of Material Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-Cho Midori-Ku, Yokohama 226-8502, Japan; (S.M.); (S.C.); (G.V.L.); (S.S.)
- The Institute for Solid State Physics, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa 277-0882, Japan
- Correspondence: ; Tel.: +81-45-924-5400
| |
Collapse
|
11
|
de Mello Gallep C, Robert D. Are cyclic plant and animal behaviours driven by gravimetric mechanical forces? JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1093-1103. [PMID: 34727177 PMCID: PMC8866634 DOI: 10.1093/jxb/erab462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/20/2021] [Indexed: 05/13/2023]
Abstract
The celestial mechanics of the Sun, Moon, and Earth dominate the variations in gravitational force that all matter, live or inert, experiences on Earth. Expressed as gravimetric tides, these variations are pervasive and have forever been part of the physical ecology with which organisms evolved. Here, we first offer a brief review of previously proposed explanations that gravimetric tides constitute a tangible and potent force shaping the rhythmic activities of organisms. Through meta-analysis, we then interrogate data from three study cases and show the close association between the omnipresent gravimetric tides and cyclic activity. As exemplified by free-running cyclic locomotor activity in isopods, reproductive effort in coral, and modulation of growth in seedlings, biological rhythms coincide with temporal patterns of the local gravimetric tide. These data reveal that, in the presumed absence of rhythmic cues such as light and temperature, local gravimetric tide is sufficient to entrain cyclic behaviour. The present evidence thus questions the phenomenological significance of so-called free-run experiments.
Collapse
Affiliation(s)
| | - Daniel Robert
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| |
Collapse
|
12
|
Murakami D, Yamazoe K, Nishimura SN, Kurahashi N, Ueda T, Miyawaki J, Ikemoto Y, Tanaka M, Harada Y. Hydration Mechanism in Blood-Compatible Polymers Undergoing Phase Separation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:1090-1098. [PMID: 34994566 DOI: 10.1021/acs.langmuir.1c02672] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Interactions involving intermediate water are crucial for the design of novel blood-compatible materials. Herein, we use a combination of atomic force microscopy, quartz crystal microbalance measurements, and soft X-ray emission spectroscopy to investigate the local hydrogen-bonded configuration of water on blood-compatible poly(2-methoxyethyl acrylate) and non-blood-compatible poly(n-butyl acrylate) grafted on a gold substrate. We find that the initially incorporated water induces polymer-dependent phase separation, facilitating further water uptake. For the blood-compatible polymer, tetrahedrally coordinated water coexists with water adsorbed on C═O groups in low-density regions of the grafted polymer surface, providing a scaffold for the formation of intermediate water. The amount of intermediate water is determined by the type of functional groups, local polymer configuration, and polymer morphology. Thus, blood compatibility is governed by the complex water/polymer interactions.
Collapse
Affiliation(s)
- Daiki Murakami
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kosuke Yamazoe
- Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba 277-8581, Japan
- Synchrotron Radiation Research Organization, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Shin-Nosuke Nishimura
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Naoya Kurahashi
- Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba 277-8581, Japan
- Synchrotron Radiation Research Organization, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Tomoya Ueda
- Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Jun Miyawaki
- Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba 277-8581, Japan
- Synchrotron Radiation Research Organization, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yuka Ikemoto
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| | - Masaru Tanaka
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yoshihisa Harada
- Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba 277-8581, Japan
- Synchrotron Radiation Research Organization, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
13
|
Nishida K, Sekida S, Anada T, Tanaka M. Modulation of Biological Responses of Tumor Cells Adhered to Poly(2-methoxyethyl acrylate) with Increasing Cell Viability under Serum-Free Conditions. ACS Biomater Sci Eng 2022; 8:672-681. [PMID: 35037460 DOI: 10.1021/acsbiomaterials.1c01469] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Circulating tumor cells in body fluids are important biomarkers in cancer diagnosis. The culture of tumor cells isolated from body fluids can provide intrinsic information about tumors and can be used to screen for the best anticancer drugs. However, the culture of primary tumor cells has been hindered by their low viability and difficulties in recapitulating the phenotype of primary tumors in in vitro culture. The culture of tumor cells under serum-free conditions is one of the methodologies to maintain the phenotype and genotype of primary tumors. Poly(2-methoxyethyl acrylate) (PMEA)-coated substrates have been investigated to prolong the proliferation of tumor cells under serum-free conditions. In this study, we investigated the detailed behavior and the mechanism of the increase in tumor cell viability after adherence to PMEA substrates. The blebbing formation of tumor cells on PMEA was attributed not to apoptosis but to the low adhesion strength of cells on PMEA. Moreover, blebbing tumor cells showed amoeboid movement and formed clusters with other cells via N-cadherin, leading to an increase in tumor cell viability. Furthermore, the behaviors of tumor cells adhered to PMEA under serum-free conditions were involved in the activation of the PI3K and Rho-associated protein kinase pathways. Thus, we propose that PMEA would be suitable for the development of devices to cultivate primary tumor cells under serum-free conditions for the label-free diagnosis of cancer.
Collapse
Affiliation(s)
- Kei Nishida
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Shogo Sekida
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Takahisa Anada
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.,Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Masaru Tanaka
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.,Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
14
|
Skoda MWA, Conzelmann NF, Fries MR, Reichart LF, Jacobs RMJ, Zhang F, Schreiber F. Switchable β-lactoglobulin (BLG) adsorption on protein resistant oligo (ethylene glycol) (OEG) self-assembled monolayers (SAMs). J Colloid Interface Sci 2022; 606:1673-1683. [PMID: 34534835 DOI: 10.1016/j.jcis.2021.08.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/07/2021] [Accepted: 08/03/2021] [Indexed: 12/16/2022]
Abstract
HYPOTHESIS Although protein adsorption at an interface is very common and important in biology and biotechnology, it is still not fully understood - mainly due to the intricate balance of forces that ultimately control it. In food processing (and medicine), controlling and manipulating protein adsorption, as well as avoiding protein adsorption (biofilm formation or membrane fouling) by the production of protein-resistant surfaces is of substantial interest. A major factor conferring resistance towards protein adsorption to a surface is the presence of tightly bound water molecules, as is the case in oligo ethylene glycol (OEG)-terminated self-assembled monolayers (SAMs). Due to strong attractive protein-protein and protein-surface interactions observed in systems containing trivalent salt ions, we hypothesize that these conditions may lead to a breakdown of protein resistance in OEG SAMs. EXPERIMENTS We studied the adsorption behavior of BLG in the presence of a lanthanum(III) chloride (LaCl3) at concentrations of 0, 0.1, 0.8 and 5.0 mM on normally protein resistant triethylene glycol-termianted (EG3) SAMs on a gold surface. We used quartz-crystal microbalance with dissipation (QCM-D) and neutron reflectivity (NR) to characterize the morphology of the interfacial region of the SAM. FINDINGS We demonstrate that the protein resistance of the EG3 SAM breaks down beyond a threshold salt concentration c∗ and mirrors the bulk behaviour of this system, showing reduced adsorption beyond a second critical salt concentration c∗∗. These results demonstrate for the first time the controlled switching of the protein-resistant properties of this type of SAM by the addition of trivalent salt.
Collapse
Affiliation(s)
- Maximilian W A Skoda
- STFC, ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Harwell Campus, Didcot OX11 0QX, UK
| | - Nina F Conzelmann
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, Tübingen 72076, Germany
| | - Madeleine R Fries
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, Tübingen 72076, Germany
| | - Lara F Reichart
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, Tübingen 72076, Germany
| | - Robert M J Jacobs
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, South Parks Road, Oxford OX1 3TA, UK
| | - Fajun Zhang
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, Tübingen 72076, Germany
| | - Frank Schreiber
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, Tübingen 72076, Germany.
| |
Collapse
|
15
|
Fluorine-containing bio-inert polymers: Roles of intermediate water. Acta Biomater 2022; 138:34-56. [PMID: 34700043 DOI: 10.1016/j.actbio.2021.10.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/06/2021] [Accepted: 10/18/2021] [Indexed: 12/13/2022]
Abstract
Fluorine-containing polymers are used not only in industrial processes but also in medical applications, because they exhibit excellent heat, weather, and chemical resistance. As these polymers are not easily degraded in our body, it is difficult to use them in applications that require antithrombotic properties, such as artificial blood vessels. The material used for medical applications should not only be stable in vivo, but it should also be inert to biomolecules such as proteins or cells. In this review, this property is defined as "bio-inert," and previous studies in this field are summarized. Bio-inert materials are less recognized as foreign substances by proteins or cells in the living body, and they must be covered at interfaces designed with the concept of intermediate water (IW). On the basis of this concept, we present here the current understanding of bio-inertness and unusual blood compatibility found in fluoropolymers used in biomedical applications. IW is the water that interacts with materials with moderate strength and has been quantified by a variety of analytical methods and simulations. For example, by using differential scanning calorimetry (DSC) measurements, IW was defined as water frozen at around -40°C. To consider the role of the IW, quantification methods of the hydration state of polymers are also summarized. These investigations have been conducted independently because of the conflict between hydrophobic fluorine and bio-inert properties that require hydrophilicity. In recent years, not many materials have been developed that incorporate the good points of both aspects, and their properties have seldom been linked to the hydration state. This has been critically performed now. Furthermore, fluorine-containing polymers in medical use are reviewed. Finally, this review also describes the molecular design of the recently reported fluorine-containing bio-inert polymers for controlling their hydration state. STATEMENT OF SIGNIFICANCE: A material covered with a hydration layer known as intermediate water that interacts moderately with other objects is difficult to be recognized as a foreign substance and exhibits bio-inert properties. Fluoropolymers show high durability, but conflict with bio-inert characteristics requiring hydrophilicity as these research studies have been conducted independently. On the other hand, materials that combine the advantages of both hydrophobic and hydrophilic features have been developed recently. Here, we summarize the molecular architecture and analysis methods that control intermediate water and provide a guideline for designing novel fluorine-containing bio-inert materials.
Collapse
|
16
|
Nishida K, Baba K, Murakami D, Tanaka M. Nanoscopic Analyses of Protein Adsorption on Poly(2-methoxyethyl acrylate) Surfaces for Tailoring Cell Adhesiveness. Biomater Sci 2022; 10:2953-2963. [DOI: 10.1039/d2bm00093h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Regulation of protein adsorption on the surface of biomaterials is important for modulating cell adhesion. Two important proteins in this regard are fibrinogen and fibronectin. Poly(2-methoxyethyl acrylate) (PMEA) and its...
Collapse
|
17
|
Fujii Y, Tominaga T, Murakami D, Tanaka M, Seto H. Local Dynamics of the Hydration Water and Poly(Methyl Methacrylate) Chains in PMMA Networks. Front Chem 2021; 9:728738. [PMID: 34778200 PMCID: PMC8586490 DOI: 10.3389/fchem.2021.728738] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/09/2021] [Indexed: 12/02/2022] Open
Abstract
The dynamic behavior of water molecules and polymer chains in a hydrated poly(methyl methacrylate) (PMMA) matrix containing a small amount of water molecules was investigated. Water molecules have been widely recognized as plasticizers for activating the segmental motion of polymer chains owing to their ability to reduce the glass transition temperature. In this study, combined with judicious hydrogen/deuterium labeling, we conducted quasi-elastic neutron scattering (QENS) experiments on PMMA for its dry and hydrated states. Our results clearly indicate that the dynamics of hydrated polymer chains are accelerated, and that individual water molecules are slower than bulk water. It is therefore suggested that the hydration water affects the local motion of PMMA and activates the local relaxation process known as restricted rotation, which is widely accepted to be generally insensitive to changes in the microenvironment.
Collapse
Affiliation(s)
- Yoshihisa Fujii
- Department of Chemistry for Materials, Graduate School of Engineering, Mie University, Tsu, Japan
| | - Taiki Tominaga
- Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society, Tsuchiura, Japan
| | - Daiki Murakami
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka, Japan
| | - Masaru Tanaka
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka, Japan
| | - Hideki Seto
- Institute of Materials Structure Science/J-PARC Center, High Energy Accelerator Research Organization, Tokai, Japan
| |
Collapse
|
18
|
Akamatsu K, Saito T, Ohashi H, Wang XL, Nakao SI. Plasma Graft Polymerization and Surface-Initiated Atom Transfer Radical Polymerization: Characteristics of Low-Fouling Membranes Obtained by Surface Modification with Poly(2-methoxyethyl Acrylate). Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c02462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Kazuki Akamatsu
- Department of Environmental Chemistry and Chemical Engineering, School of Advanced Engineering, Kogakuin University, 2665-1 Nakano-machi, Hachioji-shi, Tokyo 192-0015, Japan
| | - Tatsuru Saito
- Department of Environmental Chemistry and Chemical Engineering, School of Advanced Engineering, Kogakuin University, 2665-1 Nakano-machi, Hachioji-shi, Tokyo 192-0015, Japan
| | - Hidenori Ohashi
- Department of Chemical Engineering, Faculty of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Xiao-lin Wang
- Department of Environmental Chemistry and Chemical Engineering, School of Advanced Engineering, Kogakuin University, 2665-1 Nakano-machi, Hachioji-shi, Tokyo 192-0015, Japan
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Shin-ichi Nakao
- Department of Environmental Chemistry and Chemical Engineering, School of Advanced Engineering, Kogakuin University, 2665-1 Nakano-machi, Hachioji-shi, Tokyo 192-0015, Japan
| |
Collapse
|
19
|
Chang R, Quimada Mondarte EA, Palai D, Sekine T, Kashiwazaki A, Murakami D, Tanaka M, Hayashi T. Protein- and Cell-Resistance of Zwitterionic Peptide-Based Self-Assembled Monolayers: Anti-Biofouling Tests and Surface Force Analysis. Front Chem 2021; 9:748017. [PMID: 34692644 PMCID: PMC8527039 DOI: 10.3389/fchem.2021.748017] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/15/2021] [Indexed: 11/13/2022] Open
Abstract
Peptide-based self-assembled monolayers (peptide-SAMs) with specific zwitterionic amino acid sequences express an anti-biofouling property. In this work, we performed protein adsorption and cell adhesion tests using peptide-SAMs with repeating units of various zwitterionic pairs of amino acids (EK, DK, ER, and DR). The SAMs with the repeating units of EK and DK (EK and DK SAMs) manifested excellent bioinertness, whereas the SAMs with the repeating units of ER and DR (ER and DR SAMs) adhered proteins and cells. We also performed surface force measurements using atomic force microscopy to elucidate the mechanism underlying the difference in the anti-biofouling property. Our measurements revealed that water-induced repulsion with a range of about 8 nm acts between EK SAMs (immobilized on both probe and substrate) and DK SAMs, whereas such repulsion was not observed for ER and DR SAMs. The strength of the repulsion exhibited a clear correlation with the protein- and cell-resistance of the SAMs, indicating that the interfacial water in the vicinity of EK and DK SAMs is considered as a physical barrier to deter protein and cells from their adsorption or adhesion. The range of the repulsion observed for EK and DK SAMs is longer than 8 nm, indicating that the hydrogen bonding state of the interfacial water with a thickness of 4 nm is modified by EK and DK SAMs, resulting in the expression of the anti-biofouling property.
Collapse
Affiliation(s)
- Ryongsok Chang
- Department of Material Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Evan Angelo Quimada Mondarte
- Department of Material Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Debabrata Palai
- Department of Material Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Taito Sekine
- Department of Material Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Aki Kashiwazaki
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka, Japan
| | - Daiki Murakami
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka, Japan
| | - Masaru Tanaka
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka, Japan.,Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka, Japan
| | - Tomohiro Hayashi
- Department of Material Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Yokohama, Japan.,JST-PRESTO, Saitama, Japan.,The Institute for Solid State Physics, the University of Tokyo, Chiba, Japan
| |
Collapse
|
20
|
Nishida K, Anada T, Kobayashi S, Ueda T, Tanaka M. Effect of bound water content on cell adhesion strength to water-insoluble polymers. Acta Biomater 2021; 134:313-324. [PMID: 34332104 DOI: 10.1016/j.actbio.2021.07.058] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/22/2021] [Accepted: 07/22/2021] [Indexed: 02/07/2023]
Abstract
Adhesion of cells on biomaterials plays an essential role in modulating cellular functions. Although hydration of biomaterials occurs under biological conditions, it is challenging to systematically evaluate the correlation of hydrated water content in biomaterials with the cell adhesion strength. In this report, we investigated the effect of bound water content on the adhesion strength of cells on poly(2-methoxyethyl acrylate) (PMEA) analogue substrates. Water-insoluble PMEA analogues were synthesized to fabricate substrates with a systemically controlled bound water content. To assess the surface properties of their substrates, contact angle measurement, atomic force microscopy (AFM), and fluorescence measurement were conducted. To reflect the effect of bound water of PMEA analogues, the relationship between the bound water content and cell adhesion behavior was evaluated under serum-free condition. From the single cell force spectrometry (SCFS) and microscopic analysis, it revealed that the increment of bound water content on the substrates decreased cell adhesion strength and cell spreading on the substrates. The bound water content exhibited a good correlation with adhesion strength, spreading area, circularity, and aspect ratio of cells. Our findings indicate that the bound water content could contribute to the development of a novel biomaterial and evaluation of cell behaviors on biomaterials. STATEMENT OF SIGNIFICANCE: For coordinating cell functions, such as growth, mobility, and differentiation, modulating the adhesion strength between cells and their environments is important. Although the hydration to biomaterials has been reported to be closely related to a antifouling property, the effect of hydration water on the cell adhesion behavior is not well understood. We present the first demonstration of essential relationship between cell adhesion strength and hydrated water on a biomaterials surface using the water-insoluble polymers with different hydrated water content. The results reveal that the hydrated water content of polymer substrates strong correlation with adhesion strength of cells. Collectively, the hydrated water content of the biomaterials will be a predominant factor affecting the cell adhesion strength and behavior.
Collapse
|
21
|
Polybetaines in Biomedical Applications. Int J Mol Sci 2021; 22:ijms22179321. [PMID: 34502230 PMCID: PMC8430529 DOI: 10.3390/ijms22179321] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 12/28/2022] Open
Abstract
Polybetaines, that have moieties bearing both cationic (quaternary ammonium group) and anionic groups (carboxylate, sulfonate, phosphate/phosphinate/phosphonate groups) situated in the same structural unit represent an important class of smart polymers with unique and specific properties, belonging to the family of zwitterionic materials. According to the anionic groups, polybetaines can be divided into three major classes: poly(carboxybetaines), poly(sulfobetaines) and poly(phosphobetaines). The structural diversity of polybetaines and their special properties such as, antifouling, antimicrobial, strong hydration properties and good biocompatibility lead to their use in nanotechnology, biological and medical fields, water remediation, hydrometallurgy and the oil industry. In this review we aimed to highlight the recent developments achieved in the field of biomedical applications of polybetaines such as: antifouling, antimicrobial and implant coatings, wound healing and drug delivery systems.
Collapse
|
22
|
Mabrouk M, Beherei HH, Tanaka Y, Tanaka M. Investigating the Intermediate Water Feature of Hydrated Titanium Containing Bioactive Glass. Int J Mol Sci 2021; 22:8038. [PMID: 34360804 PMCID: PMC8348002 DOI: 10.3390/ijms22158038] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 11/21/2022] Open
Abstract
Intermediate water (IW) in hydrated bioactive glasses remains uninvestigated. We obtained titanium (Ti)-containing bioactive glasses (BGTs) (Ti at 5%, 7.5% and 10% of the glass system) using the sol-gel technique. Their thermal, physicochemical, and morphological properties, before and after Ti-doping, were analysed using DTA, XRD, FTIR, TEM, and SEM accessorised with EDAX, and size distribution and zeta potential surface charges were determined using a NanoZetasizer. The IW in hydrated BGTs was investigated by cooling and heating runs of DSC measurements. Moreover, the mode of death in an osteosarcoma cell line (MG63) was evaluated at different times of exposure to BGT discs. Ti doping had no remarkable effect on the thermal, physicochemical, and morphological properties of BGTs. However, the morphology, size, and charges of BGT nano-powders were slightly changed after inclusion of Ti compared with those of BGT0; for example, the particle size increased with increasing Ti content (from 4-5 to 7-28 nm). The IW content was enhanced in the presence of Ti. The mode of cell death revealed the effect of IW content on the proliferation of cells exposed to BGTs. These findings should help improve the biocompatibility of inorganic biomaterials.
Collapse
Affiliation(s)
- Mostafa Mabrouk
- Refractories, Ceramics and Building Materials Department, National Research Centre, 33El Bohouth St. (Former EL Tahrir St.), Dokki, Giza P.O. 12622, Egypt; (M.M.); (H.H.B.)
| | - Hanan H. Beherei
- Refractories, Ceramics and Building Materials Department, National Research Centre, 33El Bohouth St. (Former EL Tahrir St.), Dokki, Giza P.O. 12622, Egypt; (M.M.); (H.H.B.)
| | - Yukiko Tanaka
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 812-8582, Japan;
| | - Masaru Tanaka
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 812-8582, Japan;
| |
Collapse
|
23
|
Tsujimoto A, Uehara H, Yoshida H, Nishio M, Furuta K, Inui T, Matsumoto A, Morita S, Tanaka M, Kojima C. Different hydration states and passive tumor targeting ability of polyethylene glycol-modified dendrimers with high and low PEG density. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 126:112159. [PMID: 34082964 DOI: 10.1016/j.msec.2021.112159] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/25/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023]
Abstract
It has been reported that the amount of intermediate water, defined as water molecules loosely bound to a material, is a useful index of the material's bio-inert properties. Polyethylene glycol (PEG) is a well-known biocompatible polymer with a large amount of intermediate water. Many researchers have showed that PEGylated nanoparticles are passively accumulated in tumor tissues owing to their enhanced permeability and retention (EPR) effects. Dendrimers are regularly branched polymers with highly controllable size and structure, which can be exploited as potent drug carriers. In this study, we investigated the tripartite relationship among the PEG density, the hydration state, and the passive tumor targeting property, using PEGylated dendrimers. The fully PEGylated dendrimer, PEG64-den, showed similar hydration behavior to PEG and a passive tumor targeting property. In contrast, the hydration state of the partly PEGylated dendrimer, PEG5-den, was different from that of PEG64-den, and the passive tumor targeting property was not observed. This is the first report to show the hydration state of a drug carrier as well as discuss a relationship between the hydration state and biodistribution.
Collapse
Affiliation(s)
- Ayako Tsujimoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Hiroki Uehara
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Haruna Yoshida
- Department of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Misaki Nishio
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Kousuke Furuta
- Department of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Takashi Inui
- Department of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Akikazu Matsumoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Shigeaki Morita
- Department of Engineering Science, Osaka Electro-Communication University, 18-8 Hatsucho, Neyagawa 572-8530, Japan
| | - Masaru Tanaka
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Chie Kojima
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan.
| |
Collapse
|
24
|
Affiliation(s)
- Tomohiro Hayashi
- Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8502, Japan
- JST-PRESTO (Materials Informatics), 4-1-8 Hon-cho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|