1
|
Azarkin M, Kirakosyan M, Ryabov V. Microdosimetric Simulation of Gold-Nanoparticle-Enhanced Radiotherapy. Int J Mol Sci 2024; 25:9525. [PMID: 39273472 PMCID: PMC11395083 DOI: 10.3390/ijms25179525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/20/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Conventional X-ray therapy (XRT) is commonly applied to suppress cancerous tumors; however, it often inflicts collateral damage to nearby healthy tissue. In order to provide a better conformity of the dose distribution in the irradiated tumor, proton therapy (PT) is increasingly being used to treat solid tumors. Furthermore, radiosensitization with gold nanoparticles (GNPs) has been extensively studied to increase the therapeutic ratio. The mechanism of radiosensitization is assumed to be connected to an enhancement of the absorbed dose due to huge photoelectric cross-sections with gold. Nevertheless, numerous theoretical studies, mostly based on Monte Carlo (MC) simulations, did not provide a consistent and thorough picture of dose enhancement and, therefore, the radiosensitization effect. Radiosensitization by nanoparticles in PT is even less studied than in XRT. Therefore, we investigate the physics picture of GNP-enhanced RT using an MC simulation with Geant4 equipped with the most recent physics models, taking into account a wide range of physics processes relevant for realistic PT and XRT. Namely, we measured dose enhancement factors in the vicinity of GNP, with diameters ranging from 10 nm to 80 nm. The dose enhancement in the vicinity of GNP reaches high values for XRT, while it is very modest for PT. The macroscopic dose enhancement factors for realistic therapeutic GNP concentrations are rather low for all RT scenarios; therefore, other physico-chemical and biological mechanisms should be additionally invoked for an explanation of the radiosensitization effect observed in many experiments.
Collapse
Affiliation(s)
- Maxim Azarkin
- P.N. Lebedev Physical Institute, 119991 Moscow, Russia
| | | | | |
Collapse
|
2
|
Sun X, Wu L, Du L, Xu W, Han M. Targeting the organelle for radiosensitization in cancer radiotherapy. Asian J Pharm Sci 2024; 19:100903. [PMID: 38590796 PMCID: PMC10999375 DOI: 10.1016/j.ajps.2024.100903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/29/2023] [Accepted: 01/16/2024] [Indexed: 04/10/2024] Open
Abstract
Radiotherapy is a well-established cytotoxic therapy for local solid cancers, utilizing high-energy ionizing radiation to destroy cancer cells. However, this method has several limitations, including low radiation energy deposition, severe damage to surrounding normal cells, and high tumor resistance to radiation. Among various radiotherapy methods, boron neutron capture therapy (BNCT) has emerged as a principal approach to improve the therapeutic ratio of malignancies and reduce lethality to surrounding normal tissue, but it remains deficient in terms of insufficient boron accumulation as well as short retention time, which limits the curative effect. Recently, a series of radiosensitizers that can selectively accumulate in specific organelles of cancer cells have been developed to precisely target radiotherapy, thereby reducing side effects of normal tissue damage, overcoming radioresistance, and improving radiosensitivity. In this review, we mainly focus on the field of nanomedicine-based cancer radiotherapy and discuss the organelle-targeted radiosensitizers, specifically including nucleus, mitochondria, endoplasmic reticulum and lysosomes. Furthermore, the organelle-targeted boron carriers used in BNCT are particularly presented. Through demonstrating recent developments in organelle-targeted radiosensitization, we hope to provide insight into the design of organelle-targeted radiosensitizers for clinical cancer treatment.
Collapse
Affiliation(s)
- Xiaoyan Sun
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Linjie Wu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Lina Du
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Wenhong Xu
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Intervention, The Second Afliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Min Han
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Intervention, The Second Afliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310058, China
- Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
- Jinhua Institute of Zhejiang University, Jinhua 321299, China
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
3
|
Gerken LRH, Gerdes ME, Pruschy M, Herrmann IK. Prospects of nanoparticle-based radioenhancement for radiotherapy. MATERIALS HORIZONS 2023; 10:4059-4082. [PMID: 37555747 PMCID: PMC10544071 DOI: 10.1039/d3mh00265a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 08/02/2023] [Indexed: 08/10/2023]
Abstract
Radiotherapy is a key pillar of solid cancer treatment. Despite a high level of conformal dose deposition, radiotherapy is limited due to co-irradiation of organs at risk and subsequent normal tissue toxicities. Nanotechnology offers an attractive opportunity for increasing the efficacy and safety of cancer radiotherapy. Leveraging the freedom of design and the growing synthetic capabilities of the nanomaterial-community, a variety of engineered nanomaterials have been designed and investigated as radiosensitizers or radioenhancers. While research so far has been primarily focused on gold nanoparticles and other high atomic number materials to increase the absorption cross section of tumor tissue, recent studies are challenging the traditional concept of high-Z nanoparticle radioenhancers and highlight the importance of catalytic activity. This review provides a concise overview on the knowledge of nanoparticle radioenhancement mechanisms and their quantification. It critically discusses potential radioenhancer candidate materials and general design criteria for different radiation therapy modalities, and concludes with research priorities in order to advance the development of nanomaterials, to enhance the efficacy of radiotherapy and to increase at the same time the therapeutic window.
Collapse
Affiliation(s)
- Lukas R H Gerken
- Nanoparticle Systems Engineering Laboratory, Institute of Energy and Process Engineering (IEPE), Department of Mechanical and Process Engineering (D-MAVT), ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland.
- Particles-Biology Interactions Laboratory, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Maren E Gerdes
- Karolinska Institutet, Solnavägen 1, 171 77 Stockholm, Sweden
| | - Martin Pruschy
- Laboratory for Applied Radiobiology, Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Inge K Herrmann
- Nanoparticle Systems Engineering Laboratory, Institute of Energy and Process Engineering (IEPE), Department of Mechanical and Process Engineering (D-MAVT), ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland.
- Particles-Biology Interactions Laboratory, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| |
Collapse
|
4
|
Salehiabar M, Ghaffarlou M, Mohammadi A, Mousazadeh N, Rahimi H, Abhari F, Rashidzadeh H, Nasehi L, Rezaeejam H, Barsbay M, Ertas YN, Nosrati H, Kavetskyy T, Danafar H. Targeted CuFe 2O 4 hybrid nanoradiosensitizers for synchronous chemoradiotherapy. J Control Release 2023; 353:850-863. [PMID: 36493951 DOI: 10.1016/j.jconrel.2022.12.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/08/2022] [Accepted: 12/03/2022] [Indexed: 12/23/2022]
Abstract
Multifunctional nanoplatforms based on novel bimetallic nanoparticles have emerged as effective radiosensitizers owing to their potential capability in cancer cells radiosensitization. Implementation of chemotherapy along with radiotherapy, known as synchronous chemoradiotherapy, can augment the treatment efficacy. Herein, a tumor targeted nanoradiosensitizer with synchronous chemoradiotion properties, termed as CuFe2O4@BSA-FA-CUR, loaded with curcumin (CUR) and modified by bovine serum albumin (BSA) and folic acid (FA) was developed to enhance tumor accumulation and promote the anti-cancer activity while attenuating adverse effects. Both copper (Cu) and iron (Fe) were utilized in the construction of these submicron scale entities, therefore strong radiosensitization effect is anticipated by implementation of these two metals. The structure-function relationships between constituents of nanomaterials and their function led to the development of nanoscale materials with great radiosensitizing capacity and biosafety. BSA was used to anchor Fe and Cu ions but also to improve colloidal stability, blood circulation time, biocompatibility, and further functionalization. Moreover, to specifically target tumor sites and enhance cellular uptake, FA was conjugated onto the surface of hybrid bimetallic nanoparticles. Finally, CUR as a natural chemotherapeutic agent was encapsulated into the developed bimetallic nanoparticles. With incorporation of all abovementioned stages into one multifunctional nanoplatform, CuFe2O4@BSA-FA-CUR is produced for synergistic chemoradiotherapy with positive outcomes. In vitro investigation revealed that these nanoplatforms bear excellent biosafety, great tumor cell killing ability and radiosensitizing capacity. In addition, high cancer-suppression efficiency was observed through in vivo studies. It is worth mentioning that co-use of CuFe2O4@BSA-FA-CUR nanoplatforms and X-ray radiation led to complete tumor ablation in almost all of the treated mice. No mortality or radiation-induced normal tissue toxicity were observed following administration of CuFe2O4@BSA-FA-CUR nanoparticles which highlights the biosafety of these submicron scale entities. These results offer powerful evidence for the potential capability of CuFe2O4@BSA-FA-CUR in radiosensitization of malignant tumors and opens up a new avenue of research in this area.
Collapse
Affiliation(s)
- Marziyeh Salehiabar
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran; Joint Ukraine-Azerbaijan International Research and Education Center of Nanobiotechnology and Functional Nanosystems, Drohobych, Ukraine
| | | | - Ali Mohammadi
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Navid Mousazadeh
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hossein Rahimi
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Abhari
- Department of Radiology, School of Paramedical Sciences, Zanjan University of Medical Sciences, Zanjan 45139- 56184, Iran
| | - Hamid Rashidzadeh
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Leila Nasehi
- Department of Medical Laboratory, School of Paramedical Sciences, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hamed Rezaeejam
- Department of Radiology, School of Paramedical Sciences, Zanjan University of Medical Sciences, Zanjan 45139- 56184, Iran
| | - Murat Barsbay
- Hacettepe University, Department of Chemistry, Beytepe, Ankara 06800, Türkiye
| | - Yavuz Nuri Ertas
- ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri 38039, Türkiye; Department of Biomedical Engineering, Erciyes University, Kayseri 38039, Türkiye
| | - Hamed Nosrati
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran; Joint Ukraine-Azerbaijan International Research and Education Center of Nanobiotechnology and Functional Nanosystems, Drohobych, Ukraine.
| | - Taras Kavetskyy
- Joint Ukraine-Azerbaijan International Research and Education Center of Nanobiotechnology and Functional Nanosystems, Drohobych, Ukraine; Department of Materials Engineering, The John Paul II Catholic University of Lublin, 20-950 Lublin, Poland; Drohobych Ivan Franko State Pedagogical University, 82100 Drohobych, Ukraine.
| | - Hossein Danafar
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran; Joint Ukraine-Azerbaijan International Research and Education Center of Nanobiotechnology and Functional Nanosystems, Drohobych, Ukraine.
| |
Collapse
|
5
|
Salah M, Akasaka H, Shimizu Y, Morita K, Nishimura Y, Kubota H, Kawaguchi H, Sogawa T, Mukumoto N, Ogino C, Sasaki R. Reactive oxygen species-inducing titanium peroxide nanoparticles as promising radiosensitizers for eliminating pancreatic cancer stem cells. J Exp Clin Cancer Res 2022; 41:146. [PMID: 35428310 PMCID: PMC9013114 DOI: 10.1186/s13046-022-02358-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/05/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Despite recent advances in radiotherapy, radioresistance in patients with pancreatic cancer remains a crucial dilemma for clinical treatment. Cancer stem cells (CSCs) represent a major factor in radioresistance. Developing a potent radiosensitizer may be a novel candidate for the eradication of pancreatic CSCs. METHODS CSCs were isolated from MIA PaCa-2 and PANC1 human pancreatic cancer cell lines. Titanium peroxide nanoparticles (TiOxNPs) were synthesized from titanium dioxide nanoparticles (TiO2NPs) and utilized as radiosensitizers when added one hour prior to radiation exposure. The antitumor activity of this novel therapeutic strategy was evaluated against well-established pancreatic CSCs model both in vitro and in vivo. RESULTS It is shown that TiOxNPs combined with ionizing radiation exhibit anti-cancer effects on radioresistant CSCs both in vitro and in vivo. TiOxNPs exhibited a synergistic effect with radiation on pancreatic CSC-enriched spheres by downregulating self-renewal regulatory factors and CSC surface markers. Moreover, combined treatment suppressed epithelial-mesenchymal transition, migration, and invasion properties in primary and aggressive pancreatic cancer cells by reducing the expression of proteins relevant to these processes. Notably, radiosensitizing TiOxNPs suppressed the growth of pancreatic xenografts following primary or dissociating sphere MIA PaCa-2 cell implantation. It is inferred that synergy is formed by generating intolerable levels of reactive oxygen species (ROS) and inactivating the AKT signaling pathway. CONCLUSIONS Our data suggested the use of TiOxNPs in combination with radiation may be considered an attractive therapeutic strategy to eliminate pancreatic CSCs.
Collapse
Grants
- 21K07594, 20KK0192, 20K21576, 20K08108 Ministry of Education, Culture, Sports, Science, and Technology of Japan
- 19K08121 Ministry of Education, Culture, Sports, Science, and Technology of Japan
- 20K08134 Ministry of Education, Culture, Sports, Science, and Technology of Japan
Collapse
Affiliation(s)
- Mohammed Salah
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan.
- Department of Biochemistry, Faculty of Veterinary Medicine, South Valley University, Qena, 83522, Egypt.
| | - Hiroaki Akasaka
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Yasuyuki Shimizu
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Kenta Morita
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Hyogo, 650-0017, Japan
| | - Yuya Nishimura
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Hyogo, 650-0017, Japan
| | - Hikaru Kubota
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Hiroki Kawaguchi
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Tomomi Sogawa
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Naritoshi Mukumoto
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Chiaki Ogino
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Hyogo, 650-0017, Japan
| | - Ryohei Sasaki
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan.
| |
Collapse
|
6
|
Zhao Y, Song Q, Lin Y, Chu F, Wei Y, Liu S, Pan C, Quan L, Wang Y. Improving the photostability of fluorescent dyes by polymer nano‐insulating layer. J Appl Polym Sci 2022. [DOI: 10.1002/app.51625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yingshi Zhao
- Jiangsu Provincial Engineering Research Center for Biomedical Materials and Advanced Medical Devices Huaiyin Institute of Technology Huai'an Jiangsu People's Republic of China
| | - Qinyong Song
- Jiangsu Provincial Engineering Research Center for Biomedical Materials and Advanced Medical Devices Huaiyin Institute of Technology Huai'an Jiangsu People's Republic of China
| | - Yuebin Lin
- Jiangsu Provincial Engineering Research Center for Biomedical Materials and Advanced Medical Devices Huaiyin Institute of Technology Huai'an Jiangsu People's Republic of China
| | - Feng Chu
- Department of Biomedical Engineering, College of Engineering and Applied Sciences Nanjing University Nanjing China
| | - Yanchun Wei
- Jiangsu Provincial Engineering Research Center for Biomedical Materials and Advanced Medical Devices Huaiyin Institute of Technology Huai'an Jiangsu People's Republic of China
| | - Sen Liu
- Jiangsu Provincial Engineering Research Center for Biomedical Materials and Advanced Medical Devices Huaiyin Institute of Technology Huai'an Jiangsu People's Republic of China
| | - Changjiang Pan
- Jiangsu Provincial Engineering Research Center for Biomedical Materials and Advanced Medical Devices Huaiyin Institute of Technology Huai'an Jiangsu People's Republic of China
| | - Li Quan
- Jiangsu Provincial Engineering Research Center for Biomedical Materials and Advanced Medical Devices Huaiyin Institute of Technology Huai'an Jiangsu People's Republic of China
| | - Yiqing Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences Nanjing University Nanjing China
| |
Collapse
|
7
|
Nakayama M, Akasaka H, Miyazaki E, Goto Y, Oki Y, Kawate Y, Morita K, Sasaki R. Image contrast assessment of metal-based nanoparticles as applications for image-guided radiation therapy. Phys Imaging Radiat Oncol 2021; 20:94-97. [PMID: 34869923 PMCID: PMC8626564 DOI: 10.1016/j.phro.2021.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/12/2021] [Accepted: 11/12/2021] [Indexed: 11/16/2022] Open
Abstract
Metal-based nanoparticles (NPs) have been extensively studied for dose enhancement applications in radiation therapy. This study investigated the utility of such NPs for image-guided radiation therapy (IGRT). Phantom images of gold NPs (AuNPs) and titanium peroxide NPs (TiOxNPs) with different concentrations were acquired using IGRT modalities, including cone-beam computed tomography (CBCT). AuNPs induced strong contrast enhancement in kV energy CBCT images, whereas TiOxNPs at high concentrations showed weak but detectable changes. The results indicated that these NPs can be used to enhance IGRT images as well as dose enhancement for treatment purposes.
Collapse
Affiliation(s)
- Masao Nakayama
- Division of Radiation Therapy, Kita-Harima Medical Center, 926-250 Ichibacho, Ono, Hyogo 675-1392, Japan.,Division of Radiation Oncology, Kobe University Graduate School of Medicine, 7-5-2 Kusunokicho, Chuou-ku, Kobe, Hyogo 650-0017, Japan
| | - Hiroaki Akasaka
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, 7-5-2 Kusunokicho, Chuou-ku, Kobe, Hyogo 650-0017, Japan.,Division of Radiation Oncology, Kobe Minimally Invasive Cancer Center, 8-5-1 Minatojima-Nakamachi, Chuou-ku, Kobe, Hyogo 650-0046, Japan
| | - Eiichi Miyazaki
- Division of Radiation Therapy, Kita-Harima Medical Center, 926-250 Ichibacho, Ono, Hyogo 675-1392, Japan
| | - Yoshihiro Goto
- Department of Radiology, Kita-Harima Medical Center, 926-250 Ichibacho, Ono, Hyogo 675-1392, Japan
| | - Yuya Oki
- Division of Radiation Oncology, Kobe Minimally Invasive Cancer Center, 8-5-1 Minatojima-Nakamachi, Chuou-ku, Kobe, Hyogo 650-0046, Japan
| | - Yosuke Kawate
- Division of Radiation Oncology, Kobe Minimally Invasive Cancer Center, 8-5-1 Minatojima-Nakamachi, Chuou-ku, Kobe, Hyogo 650-0046, Japan
| | - Kenta Morita
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Ryohei Sasaki
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, 7-5-2 Kusunokicho, Chuou-ku, Kobe, Hyogo 650-0017, Japan
| |
Collapse
|
8
|
A state-of-the-art review on the application of various pharmaceutical nanoparticles as a promising technology in cancer treatment. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103352] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
9
|
Kawassaki RK, Romano M, Dietrich N, Araki K. Titanium and Iron Oxide Nanoparticles for Cancer Therapy: Surface Chemistry and Biological Implications. FRONTIERS IN NANOTECHNOLOGY 2021. [DOI: 10.3389/fnano.2021.735434] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Currently, cancer is among the most challenging diseases due to its ability to continuously evolve into a more complex muldimentional system, in addition to its high capability to spread to other organs and tissues. In this context, the relevance of nanobiomaterials (NBMs) for the development of new more effective and less harmful treatments is increasing. NBMs provide the possibility of combining several functionalities on a single system, expectedly in a synergic way, to better perform the treatment and cure. However, the control of properties such as colloidal stability, circulation time, pharmacokinetics, and biodistribution, assuring the concentration in specific target tissues and organs, while keeping all desired properties, tends to be dependent on subtle changes in surface chemistry. Hence, the behavior of such materials in different media/environments is of uttermost relevance and concern since it can compromise their efficiency and safety on application. Given the bright perspectives, many efforts have been focused on the development of nanomaterials fulfilling the requirements for real application. These include robust and reproducible preparation methods to avoid aggregation while preserving the interaction properties. The possible impact of nanomaterials in different forms of diagnosis and therapy has been demonstrated in the past few years, given the perspectives on how revolutionary they can be in medicine and health. Considering the high biocompatibility and suitability, this review is focused on titanium dioxide– and iron oxide–based nanoagents highlighting the current trends and main advancements in the research for cancer therapies. The effects of phenomena, such as aggregation and agglomeration, the formation of the corona layer, and how they can compromise relevant properties of nanomaterials and their potential applicability, are also addressed. In short, this review summarizes the current understanding and perspectives on such smart nanobiomaterials for diagnostics, treatment, and theranostics of diseases.
Collapse
|