1
|
Xie C, Zhang T, Qin Z. Plasmonic-Driven Regulation of Biomolecular Activity In Situ. Annu Rev Biomed Eng 2024; 26:475-501. [PMID: 38594921 DOI: 10.1146/annurev-bioeng-110222-105043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Selective and remote manipulation of activity for biomolecules, including protein, DNA, and lipids, is crucial to elucidate their molecular function and to develop biomedical applications. While advances in tool development, such as optogenetics, have significantly impacted these directions, the requirement for genetic modification significantly limits their therapeutic applications. Plasmonic nanoparticle heating has brought new opportunities to the field, as hot nanoparticles are unique point heat sources at the nanoscale. In this review, we summarize fundamental engineering problems such as plasmonic heating and the resulting biomolecular responses. We highlight the biological responses and applications of manipulating biomolecules and provide perspectives for future directions in the field.
Collapse
Affiliation(s)
- Chen Xie
- Department of Mechanical Engineering, University of Texas at Dallas, Richardson, Texas, USA
| | - Tingting Zhang
- Department of Mechanical Engineering, University of Texas at Dallas, Richardson, Texas, USA
| | - Zhenpeng Qin
- Department of Biomedical Engineering, University of Texas at Southwestern Medical Center, Richardson, Texas, USA
- Department of Bioengineering, Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, Texas, USA;
- Department of Mechanical Engineering, University of Texas at Dallas, Richardson, Texas, USA
| |
Collapse
|
2
|
Consoli GML, Giuffrida ML, Zimbone S, Ferreri L, Maugeri L, Palmieri M, Satriano C, Forte G, Petralia S. Green Light-Triggerable Chemo-Photothermal Activity of Cytarabine-Loaded Polymer Carbon Dots: Mechanism and Preliminary In Vitro Evaluation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:5732-5743. [PMID: 36688816 PMCID: PMC9906628 DOI: 10.1021/acsami.2c22500] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/12/2023] [Indexed: 06/01/2023]
Abstract
Carbon-based nanostructures are attracting a lot of attention because of their very low toxicity, excellent visible light-triggered optical and photothermal properties, and intriguing applications. Currently, the development of multifunctional carbon-based nanostructures for a synergistic chemo-photothermal approach is a challenging topic for the advancement of cancer treatment. Here, we report an unprecedented example of photoresponsive carbon-based polymer dots (CPDs-PNM) obtained by a one-pot thermal process from poly(N-isopropylacrylamide) (PNIPAM) without using organic solvent and additional reagents. The CPDs-PNM nanostructures were characterized by spectroscopic techniques, transmission electron microscopy, and atomic force microscopy. The CPDs-PNM exhibited high photothermal conversion efficiency, lower critical solution temperature (LCST) behavior, and good cytarabine (arabinosyl cytosine, AraC) loading capacity (62.3%). The formation of a CPDs-PNM/AraC adduct and photothermal-controlled drug release, triggered by green light excitation, were demonstrated by spectroscopic techniques, and the drug-polymer interaction and drug release mechanism were well supported by modeling simulation calculations. The cellular uptake of empty and AraC-loaded CPDs-PNM was imaged by confocal laser scanning microscopy. In vitro experiments evidenced that CPDs-PNM did not affect the viability of neuroblastoma cells, while the CPDs-PNM/AraC adduct under light irradiation exhibited significantly higher toxicity than AraC alone by a combined chemo-photothermal effect.
Collapse
Affiliation(s)
- Grazia M. L. Consoli
- CNR-Institute
of Biomolecular Chemistry, Via Paolo Gaifami 18, 95126Catania, Italy
- CIB-Interuniversity
Consortium for Biotechnologies, University
of Catania, Via Flavia,
23/1, 34148Trieste, Italy
| | | | - Stefania Zimbone
- CNR-Institute
of Crystallography, Via
Paolo Gaifami 18, 95126Catania, Italy
| | - Loredana Ferreri
- CNR-Institute
of Biomolecular Chemistry, Via Paolo Gaifami 18, 95126Catania, Italy
| | - Ludovica Maugeri
- Department
of Drug Science and Health, University of
Catania, Via Santa Sofia 64, 95125Catania, Italy
| | - Michele Palmieri
- CSEM-Swiss
Center for Electronics and Microtechnology, Rue Jaquet-Droz 1, 2002New Chatel, Switzerland
| | - Cristina Satriano
- Department
of Chemical Science, University of Catania, Via Santa Sofia 64, 95125Catania, Italy
| | - Giuseppe Forte
- Department
of Drug Science and Health, University of
Catania, Via Santa Sofia 64, 95125Catania, Italy
| | - Salvatore Petralia
- CIB-Interuniversity
Consortium for Biotechnologies, University
of Catania, Via Flavia,
23/1, 34148Trieste, Italy
- Department
of Drug Science and Health, University of
Catania, Via Santa Sofia 64, 95125Catania, Italy
| |
Collapse
|
3
|
Gold Nanorods for Drug and Gene Delivery: An Overview of Recent Advancements. Pharmaceutics 2022; 14:pharmaceutics14030664. [PMID: 35336038 PMCID: PMC8951391 DOI: 10.3390/pharmaceutics14030664] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 02/04/2023] Open
Abstract
Over the past few decades, gold nanomaterials have shown great promise in the field of nanotechnology, especially in medical and biological applications. They have become the most used nanomaterials in those fields due to their several advantageous. However, rod-shaped gold nanoparticles, or gold nanorods (GNRs), have some more unique physical, optical, and chemical properties, making them proper candidates for biomedical applications including drug/gene delivery, photothermal/photodynamic therapy, and theranostics. Most of their therapeutic applications are based on their ability for tunable heat generation upon exposure to near-infrared (NIR) radiation, which is helpful in both NIR-responsive cargo delivery and photothermal/photodynamic therapies. In this review, a comprehensive insight into the properties, synthesis methods and toxicity of gold nanorods are overviewed first. For the main body of the review, the therapeutic applications of GNRs are provided in four main sections: (i) drug delivery, (ii) gene delivery, (iii) photothermal/photodynamic therapy, and (iv) theranostics applications. Finally, the challenges and future perspectives of their therapeutic application are discussed.
Collapse
|
4
|
Yang H, Cao Y, Li D, Li F, Ma J, Peng S, Liu P. AS1411 and EpDT3-conjugated silver nanotriangle-mediated photothermal therapy for breast cancer and cancer stem cells. Nanomedicine (Lond) 2021; 16:2503-2519. [PMID: 34812051 DOI: 10.2217/nnm-2021-0257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: This study aimed to construct AS1411 and EpDT3-conjugated PEGylated silver nanotriangles (AENTs) and assess their ability to target breast cancer and cancer stem cells, as well as the antitumor and antimetastatic effects of AENT-mediated photothermal therapy. Materials & methods: AENTs were constructed and characterized. The targeting properties, as well as antitumor and antimetastatic activities, were evaluated in MDA-MB-231 breast cancer cells, cancer stem cells and breast cancer-bearing mice. Results: AENTs displayed excellent targeting property to breast cancer cells and cancer stem cells. AENT-mediated photothermal therapy greatly inhibited (>45%) the migration and invasion of breast cancer cells, as well as tumor growth and lung metastasis in the mice. Conclusion: AENT-mediated photothermal therapy might be an effective strategy for the treatment of breast cancer.
Collapse
Affiliation(s)
- Huiquan Yang
- School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Yuyu Cao
- School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Dongdong Li
- School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Fan Li
- School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Jing Ma
- School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Siqi Peng
- School of Life Science & Technology, Key Laboratory of Developmental Genes & Human Disease, Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Peidang Liu
- School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China.,Jiangsu Key Laboratory for Biomaterials & Devices, Southeast University, Nanjing, Jiangsu, People's Republic of China
| |
Collapse
|
5
|
Azerbaijan MH, Bahmani E, Jouybari MH, Hassaniazardaryani A, Goleij P, Akrami M, Irani M. Electrospun gold nanorods/graphene oxide loaded-core-shell nanofibers for local delivery of paclitaxel against lung cancer during photo-chemotherapy method. Eur J Pharm Sci 2021; 164:105914. [PMID: 34146683 DOI: 10.1016/j.ejps.2021.105914] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/22/2021] [Accepted: 06/14/2021] [Indexed: 02/07/2023]
Abstract
The combinations of photothermal therapy (PTT) and chemotherapy (CHT) have attracted increasing attention for cancer therapy. In the present study, paclitaxel as an anticancer drug and graphene oxide/gold nanorods (GO/Au NRs) were simultaneously loaded into the poly (tetramethylene ether) glycol based-polyurethane (PTMG-PU) (core)/chitosan (shell) nanofibers prepared by the coaxial electrospinning method. The potential of the synthesized nanofiber as a pH/temperature dual responsive carrier was investigated for the controlled release of paclitaxel against A549 lung cancer during PTT/CHT combined method. The synthesized core-shell nanofibers were characterized using SEM, TEM and XRD analysis. The drug encapsulation efficiency, drug release and kinetic studies were carried out. The compatibility of the synthesized core-shell nanofibers was also investigated. The cell viability of the synthesized nanofibers treated with A549 lung cancer cells was investigated under alone CHT, alone PTT and PTT/CHT method. The in vivo studies indicated that the PTT/CHT method demonstrated an optimal therapeutic effect on tumor inhibition without change in body weight. The obtained results demonstrated that the synthesized core-shell nanofibers would be used for lung cancer treatment under NIR irradiation in the future.
Collapse
Affiliation(s)
| | - Ehsan Bahmani
- Department of Chemical Engineering, Payame Noor University, Tehran, Iran
| | - Mania Habibi Jouybari
- Department of Pharmaceutics, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Pouya Goleij
- Department of Genetics, Faculty of Biology, Sana Institute of Higher Education, Sari, Iran
| | - Mohammad Akrami
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Irani
- Faculty of Pharmacy, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|