1
|
Cui J, Liu L, Chen B, Hu J, Song M, Dai H, Wang X, Geng H. A comprehensive review on the inherent and enhanced antifouling mechanisms of hydrogels and their applications. Int J Biol Macromol 2024; 265:130994. [PMID: 38518950 DOI: 10.1016/j.ijbiomac.2024.130994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 03/02/2024] [Accepted: 03/17/2024] [Indexed: 03/24/2024]
Abstract
Biofouling remains a persistent challenge within the domains of biomedicine, tissue engineering, marine industry, and membrane separation processes. Multifunctional hydrogels have garnered substantial attention due to their complex three-dimensional architecture, hydrophilicity, biocompatibility, and flexibility. These hydrogels have shown notable advances across various engineering disciplines. The antifouling efficacy of hydrogels typically covers a range of strategies to mitigate or inhibit the adhesion of particulate matter, biological entities, or extraneous pollutants onto their external or internal surfaces. This review provides a comprehensive review of the antifouling properties and applications of hydrogels. We first focus on elucidating the fundamental principles for the inherent resistance of hydrogels to fouling. This is followed by a comprehensive investigation of the methods employed to enhance the antifouling properties enabled by the hydrogels' composition, network structure, conductivity, photothermal properties, release of reactive oxygen species (ROS), and incorporation of silicon and fluorine compounds. Additionally, we explore the emerging prospects of antifouling hydrogels to alleviate the severe challenges posed by surface contamination, membrane separation and wound dressings. The inclusion of detailed mechanistic insights and the judicious selection of antifouling hydrogels are geared toward identifying extant gaps that must be bridged to meet practical requisites while concurrently addressing long-term antifouling applications.
Collapse
Affiliation(s)
- Junting Cui
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212000, China
| | - Lan Liu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212000, China
| | - Beiyue Chen
- Nanjing Xiaozhuang University, College of Electronics Engineering, Nanjing 211171, China
| | - Jiayi Hu
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518075, China.
| | - Mengyao Song
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518075, China.
| | - Hongliang Dai
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212000, China.
| | - Xingang Wang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212000, China.
| | - Hongya Geng
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518075, China.
| |
Collapse
|
2
|
He B, Wang P, Xue S, Liu S, Ye Q, Zhou F, Liu W. Self-healing and durable antifouling zwitterionic hydrogels based on functionalized liquid metal microgels. J Colloid Interface Sci 2024; 653:463-471. [PMID: 37725876 DOI: 10.1016/j.jcis.2023.09.084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/02/2023] [Accepted: 09/13/2023] [Indexed: 09/21/2023]
Abstract
Hydrogels are a promising new class of antifouling materials. But their utility is constrained by low mechanical strength and unsatisfactory antifouling performance over the long term. Herein, we successfully prepared zwitterionic polymer PEIS cross-linked gallium-based liquid metal microgels-based (PEIS-Gel@PMPC-GLM) hydrogels via UV-curing and amidation reaction. The as-prepared hydrogels showed preferable mechanical properties and superior hydrophilicity to the original hydrogels. The PEIS-Gel@PMPC-GLM hydrogels could prevent the adhesion of more than 90 % of microalgae and nearly 100 % of bacteria in a short-term antifouling test. PEIS-Gel@PMPC-GLM hydrogels also performed exceptionally well in the high concentration antibacterial test and the long-term antifouling test (remove more than 90 % bacteria and 80 % microalgae). In addition to releasing a high concentration of gallium ions, as shown by the ICP-OES test, PEIS-Gel@PMPC-GLM hydrogels also exhibitedexcellent lubrication performance, as demonstrated by the friction test (coefficient of friction as low as 0.023). Therefore, the antifouling effect of gallium ions combined with the strong hydration ability of the surfaces endowed the hydrogels remarkable antibacterial and antifouling properties. As a result of the exposed gallium atoms inducing further crosslinking of residual vinyl monomer in hydrogels, PEIS-Gel@PMPC-GLM hydrogels revealed certain self-healing performance.
Collapse
Affiliation(s)
- Baoluo He
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Peng Wang
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Shenghua Xue
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Shujuan Liu
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Qian Ye
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi'an 710072, PR China.
| | - Feng Zhou
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi'an 710072, PR China; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China.
| | - Weimin Liu
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi'an 710072, PR China; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China
| |
Collapse
|
3
|
Mao Q, Liu S, Xiong Y, Hu D, Huang L, Fang Z, Jiang H, Wang H, Li J, Mao S, Wang G. Advanced Marine Antifouling Hydrogels Based on 7-Amino-4-methylcoumarin Fluorescence Driven by Rare-Earth Phosphorescence. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 38048089 DOI: 10.1021/acsami.3c12710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
At present, there are very few reports on the combination of phosphorescence and fluorescence in the field of pollution prevention. A composite antibacterial agent was designed to store energy by using the phosphorescence effect of rare earth oxides, emit light at night, and stimulate 7-amino-4-methylcoumarin to produce fluorescence and prevent algae from adhering. When complexed with PVA, it exhibited excellent characteristics as an all-weather autocatalytic phosphorescence-fluorescence antifouling hydrogel. The rare earth phosphorescent powder was prepared in a high-temperature tube furnace, coated with SiO2 on the surface for waterproofing, and then grafted with 7-amino-4-methylcoumarin to obtain a composite antibacterial agent with a phosphorescence-fluorescence effect. The composite antibacterial agent was added with PVA to obtain a hydrogel, which exhibited bactericidal rates of more than 99.98% against both Gram-positive and Gram-negative bacteria after 48 h. The results of fluorescence staining showed that the coverage rate of dead bacteria reached 41.6% after 24 h. The tensile strength of the antifouling hydrogel is up to 1.49 MPa, which is strong enough for real marine environments. Moreover, the algae coverage area of the composite hydrogel under natural light was only 2.7%, representing a 10-fold reduction compared with the control. The antifouling hydrogel has good antipollution and algae suppression performance, which is due to the fact that the rare earth phosphorescent powder when exposed to sunlight can provide a light source to stimulate 7-amino-4-methylcoumarin fluorescence at night and thereby prevent algae adhesion. After testing in the marine field and the real sea test when wrapped in a fishing net, the excellent antifouling performance was demonstrated. The functional hydrogel has great application potential in the protection of seawater-exposed structures, such as bridges and bay ports.
Collapse
Affiliation(s)
- Qitong Mao
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Siqi Liu
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Yangkai Xiong
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Daxiong Hu
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Lei Huang
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Zhiqiang Fang
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Hao Jiang
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Haomin Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Jipeng Li
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Shuhong Mao
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, School of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Guoqing Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| |
Collapse
|
4
|
Wang Z, Cui F, Sui Y, Yan J. Radical chemistry in polymer science: an overview and recent advances. Beilstein J Org Chem 2023; 19:1580-1603. [PMID: 37915554 PMCID: PMC10616707 DOI: 10.3762/bjoc.19.116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/05/2023] [Indexed: 11/03/2023] Open
Abstract
Radical chemistry is one of the most important methods used in modern polymer science and industry. Over the past century, new knowledge on radical chemistry has both promoted and been generated from the emergence of polymer synthesis and modification techniques. In this review, we discuss radical chemistry in polymer science from four interconnected aspects. We begin with radical polymerization, the most employed technique for industrial production of polymeric materials, and other polymer synthesis involving a radical process. Post-polymerization modification, including polymer crosslinking and polymer surface modification, is the key process that introduces functionality and practicality to polymeric materials. Radical depolymerization, an efficient approach to destroy polymers, finds applications in two distinct fields, semiconductor industry and environmental protection. Polymer chemistry has largely diverged from organic chemistry with the fine division of modern science but polymer chemists constantly acquire new inspirations from organic chemists. Dialogues on radical chemistry between the two communities will deepen the understanding of the two fields and benefit the humanity.
Collapse
Affiliation(s)
- Zixiao Wang
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Rd., Shanghai, 201210, China
| | - Feichen Cui
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Rd., Shanghai, 201210, China
| | - Yang Sui
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Rd., Shanghai, 201210, China
| | - Jiajun Yan
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Rd., Shanghai, 201210, China
| |
Collapse
|
5
|
Cheng M, Hu L, Xu G, Pan P, Liu Q, Zhang Z, He Z, Wang C, Liu M, Chen L, Chen J. Tannic acid-based dual-network homogeneous hydrogel with antimicrobial and pro-healing properties for infected wound healing. Colloids Surf B Biointerfaces 2023; 227:113354. [PMID: 37201448 DOI: 10.1016/j.colsurfb.2023.113354] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/04/2023] [Accepted: 05/13/2023] [Indexed: 05/20/2023]
Abstract
The clinical treatment of infected skin injuries caused by exogenous bacteria faces great challenges. Conventional therapeutic approaches are difficult to achieve synergistic effects of infection control and induction of skin regeneration. In this study, a novel tannic acid-based physically cross-linked double network hydrogel (PDH gel) was prepared on demand by covalent cross-linking of tannic acid (TA) with polyvinyl alcohol (PVA) and chelating ligand of TA with Fe3+. The homogeneity of the hydrogel was achieved by the action of glycol dispersant. With the anti-inflammatory and antioxidant properties of Fe3+ and TA, this hydrogel exhibited excellent antibacterial properties by achieving 99.69% and 99.36% bacterial inhibition against E.coli and S. aureus, respectively. Moreover, the PDH gel exhibits good biocompatibility, stretchability (up to 200%) and skin-friendliness. After 14 days of PDH-1 gel implantation in a rat model infected by S. aureus, the wound healing rate was as high as 95.21%. PDH gel-1 showed more granulation tissue, more pronounced blood vessels, higher collagen fiber density and good collagen deposition, and its recovery effect was better than that of PSH gel and PDH gel-2 in vivo. Hence, this study provides a novel avenue for the design of future clinical infected wound healing dressings.
Collapse
Affiliation(s)
- Meiqi Cheng
- Marine College, Shandong University, Weihai 264209, China
| | - Le Hu
- Marine College, Shandong University, Weihai 264209, China
| | - Gan Xu
- College of Biological Science and Technology, Fuzhou University, Fuzhou 350108, China
| | - Panpan Pan
- Marine College, Shandong University, Weihai 264209, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China.
| | - Qing Liu
- Marine College, Shandong University, Weihai 264209, China
| | - Ziyue Zhang
- Marine College, Shandong University, Weihai 264209, China
| | - Zhanpeng He
- Marine College, Shandong University, Weihai 264209, China
| | - Chunxiao Wang
- Marine College, Shandong University, Weihai 264209, China
| | - Man Liu
- Marine College, Shandong University, Weihai 264209, China
| | - Li Chen
- College of Biological Science and Technology, Fuzhou University, Fuzhou 350108, China
| | - Jingdi Chen
- Marine College, Shandong University, Weihai 264209, China.
| |
Collapse
|
6
|
Catechol-functionalized sulfobetaine polymer for uniform zwitterionization via pH transition approach. Colloids Surf B Biointerfaces 2022; 220:112879. [DOI: 10.1016/j.colsurfb.2022.112879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/06/2022] [Accepted: 09/23/2022] [Indexed: 11/18/2022]
|
7
|
Zhou A, Yang K, Wu X, Liu G, Zhang TC, Wang Q, Luo F. Functionally-Designed Chitosan-based hydrogel beads for adsorption of sulfamethoxazole with light regeneration. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
8
|
Sun W, Liu J, Hao Q, Lu K, Wu Z, Chen H. A novel Y-shaped photoiniferter used for the construction of polydimethylsiloxane surfaces with antibacterial and antifouling properties. J Mater Chem B 2021; 10:262-270. [PMID: 34889346 DOI: 10.1039/d1tb01968f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The simultaneous introduction of two new functionalities into the same polymeric substrate under mild reaction conditions is an interesting and important topic. Herein, dual-functional polydimethylsiloxane (PDMS) surfaces with antibacterial and antifouling properties were conveniently developed via a novel Y-shaped asymmetric dual-functional photoiniferter (Y-iniferter). The Y-iniferter was initially immobilized onto the PDMS surface by radical coupling under visible light irradiation. Afterwards, poly(2-hydroxyethyl methacrylate) (PHEMA) brushes and antibacterial ionic liquid (IL) fragments were simultaneously immobilized on the Y-iniferter-modified PDMS surfaces by combining the sulfur(VI)-fluoride exchange (SuFEx) click reaction and UV-photoinitiated polymerization. Experiments using E. coli as a model bacterium demonstrated that the modified PDMS surfaces had both the expected antibacterial properties of the IL fragments and the excellent antifouling properties of PHEMA brushes. Furthermore, the cytotoxicity of the modified PDMS surfaces to L929 cells was examined in vitro with a CCK-8 assay, which showed that the modified surfaces maintained excellent cytocompatibility. Briefly, this strategy of constructing an antibacterial and antifouling PDMS surface has the advantages of simplicity and convenience and might inspire the construction of diverse dual-functional surfaces by utilizing PDMS more effectively.
Collapse
Affiliation(s)
- Wei Sun
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Jingrui Liu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Qing Hao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Kunyan Lu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Zhaoqiang Wu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Hong Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| |
Collapse
|
9
|
Suresh D, Goh PS, Ismail AF, Hilal N. Surface Design of Liquid Separation Membrane through Graft Polymerization: A State of the Art Review. MEMBRANES 2021; 11:832. [PMID: 34832061 PMCID: PMC8621935 DOI: 10.3390/membranes11110832] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/17/2021] [Accepted: 10/21/2021] [Indexed: 11/17/2022]
Abstract
Surface modification of membranes is an effective approach for imparting unique characteristics and additional functionalities to the membranes. Chemical grafting is a commonly used membrane modification technique due to its versatility in tailoring and optimizing the membrane surface with desired functionalities. Various types of polymers can be precisely grafted onto the membrane surface and the operating conditions of grafting can be tailored to further fine-tune the membrane surface properties. This review focuses on the recent strategies in improving the surface design of liquid separation membranes through grafting-from technique, also known as graft polymerization, to improve membrane performance in wastewater treatment and desalination applications. An overview on membrane technology processes such as pressure-driven and osmotically driven membrane processes are first briefly presented. Grafting-from surface chemical modification approaches including chemical initiated, plasma initiated and UV initiated approaches are discussed in terms of their features, advantages and limitations. The innovations in membrane surface modification techniques based on grafting-from techniques are comprehensively reviewed followed by some highlights on the current challenges in this field. It is concluded that grafting-from is a versatile and effective technique to introduce various functional groups to enhance the surface properties and separation performances of liquid separation membranes.
Collapse
Affiliation(s)
- Deepa Suresh
- Advanced Membrane Technology Research Centre, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia; (D.S.); (A.F.I.)
| | - Pei Sean Goh
- Advanced Membrane Technology Research Centre, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia; (D.S.); (A.F.I.)
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Centre, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia; (D.S.); (A.F.I.)
| | - Nidal Hilal
- NYUAD Water Research Center, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates
| |
Collapse
|