1
|
Hadji H, Cailleau C, Chassaing B, Bourge M, Ponchel G, Bouchemal K. Hyaluronan nanoplatelets exhibit extended residence time compared to spherical and ellipsoidal nanomaterials with equivalent surface potentials and volumes after oral delivery in rats. Biomater Sci 2024; 12:5812-5823. [PMID: 39405189 DOI: 10.1039/d4bm00672k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
The physicochemical properties of colloidal particles-such as size, surface properties, and morphology-play a crucial role in determining their behaviors and transit through the gastrointestinal (GI) tract. While some data exist for nonspherical nanomaterials (NMs) composed of silica or polystyrene, there is limited understanding of NMs composed of polysaccharides and polymers. This study explores the fate and GI tract residence time of hyaluronan-based NMs with distinctive hexagonal morphology and flat surfaces (nanoplatelets) following administration to rats. The behavior of these nanoplatelets was compared to NMs with spherical and ellipsoidal morphologies. The three types of NMs were labeled with a near-infrared dye (Cy5.5) and administered in single doses to healthy rats, followed by real-time in vivo imaging over 24 hours. The results revealed that altering NM morphology from spherical to ellipsoidal did not significantly affect GI tract residence time or toxicity profiles in vitro and in vivo. However, nanoplatelets exhibited a stronger Cy5.5 fluorescence signal in the abdominal region and demonstrated slower gastric emptying than spherical and ellipsoidal NMs. Ex vivo analysis of excised GI tracts rinsed with saline indicated that nanoplatelets adhered more effectively to the tightly bound mucus layer. Furthermore, histological examination of colon sections showed that nanoplatelets induced a minimal global inflammation score comparable to that of healthy rats. This study underscores the potential of hyaluronan-based nanoplatelets for oral administration, offering promising directions for both fundamental research and practical applications in nanomedicine.
Collapse
Affiliation(s)
- Hicheme Hadji
- Université Paris-Saclay, CNRS UMR8612, 91400 Orsay, France
| | | | - Benoit Chassaing
- Microbiome-Host Interactions, Institut Pasteur, Université Paris Cité, INSERM U1306, CNRS UMR6047, Paris, France
- Mucosal microbiota in chronic inflammatory diseases, INSERM U1016, CNRS UMR8104, Université de Paris, Paris, France
| | - Mickaël Bourge
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette Cedex, France
| | - Gilles Ponchel
- Université Paris-Saclay, CNRS UMR8612, 91400 Orsay, France
| | - Kawthar Bouchemal
- Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris, 75005 Paris, France.
| |
Collapse
|
2
|
Le Pennec J, Makshakova O, Nevola P, Fouladkar F, Gout E, Machillot P, Friedel-Arboleas M, Picart C, Perez S, Vortkamp A, Vivès RR, Migliorini E. Glycosaminoglycans exhibit distinct interactions and signaling with BMP2 according to their nature and localization. Carbohydr Polym 2024; 341:122294. [PMID: 38876708 DOI: 10.1016/j.carbpol.2024.122294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/07/2024] [Accepted: 05/17/2024] [Indexed: 06/16/2024]
Abstract
The role of glycosaminoglycans (GAGs) in modulating bone morphogenetic protein (BMP) signaling represents a recent and underexplored area. Conflicting reports suggest a dual effect: some indicate a positive influence, while others demonstrate a negative impact. This duality suggests that the localization of GAGs (either at the cell surface or within the extracellular matrix) or the specific type of GAG may dictate their signaling role. The precise sulfation patterns of heparan sulfate (HS) responsible for BMP2 binding remain elusive. BMP2 exhibits a preference for binding to HS over other GAGs. Using well-characterized biomaterials mimicking the extracellular matrix, our research reveals that HS promotes BMP2 signaling in the extracellular space, contrary to chondroitin sulfate (CS), which enhances BMP2 bioactivity at the cell surface. Further observations indicate that a central IdoA (2S)-GlcNS (6S) tri-sulfated motif within HS hexasaccharides enhances binding. Nevertheless, BMP2 exhibits a degree of adaptability to various HS sulfation types and sequences. Molecular dynamic simulations attribute this adaptability to the BMP2 N-terminal end flexibility. Our findings illustrate the complex interplay between GAGs and BMP signaling, highlighting the importance of localization and specific sulfation patterns. This understanding has implications for the development of biomaterials with tailored properties for therapeutic applications targeting BMP signaling pathways.
Collapse
Affiliation(s)
- Jean Le Pennec
- Univ. Grenoble Alpes, INSERM, CEA, CNRS, U1292 Biosanté, EMR 5000, Grenoble, France
| | - Olga Makshakova
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, Synthetic Biology of Signalling Processes Lab, University of Freiburg, 79104 Freiburg, Germany
| | - Paola Nevola
- Univ. Grenoble Alpes, INSERM, CEA, CNRS, U1292 Biosanté, EMR 5000, Grenoble, France; Dipartimento di Ingegneria Chimica dei Materiali e della Produzione Industriale, University of Naples Federico II, Napoli, Italy
| | - Farah Fouladkar
- Univ. Grenoble Alpes, INSERM, CEA, CNRS, U1292 Biosanté, EMR 5000, Grenoble, France
| | - Evelyne Gout
- Univ. Grenoble Alpes, CNRS, CEA, IBS, Grenoble, France
| | - Paul Machillot
- Univ. Grenoble Alpes, INSERM, CEA, CNRS, U1292 Biosanté, EMR 5000, Grenoble, France
| | | | - Catherine Picart
- Univ. Grenoble Alpes, INSERM, CEA, CNRS, U1292 Biosanté, EMR 5000, Grenoble, France
| | - Serge Perez
- Univ. Grenoble Alpes, CNRS, Centre de Recherche sur les Macromolécules Végétales, Grenoble, France
| | - Andrea Vortkamp
- Developmental Biology, Centre for Medical Biotechnology, University Duisburg-Essen, Essen, Germany
| | | | - Elisa Migliorini
- Univ. Grenoble Alpes, INSERM, CEA, CNRS, U1292 Biosanté, EMR 5000, Grenoble, France.
| |
Collapse
|
3
|
Sumohan Pillai A, Achraf Ben Njima M, Ayadi Y, Cattiaux L, Ladram A, Piesse C, Baptiste B, Gallard JF, Mallet JM, Bouchemal K. Cyclodextrin-based supramolecular nanogels decorated with mannose for short peptide encapsulation. Int J Pharm 2024; 660:124379. [PMID: 38925235 DOI: 10.1016/j.ijpharm.2024.124379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 06/21/2024] [Accepted: 06/22/2024] [Indexed: 06/28/2024]
Abstract
Nanogels are aqueous dispersions of hydrogel particles formed by physically or chemically cross-linked polymer networks of nanoscale size. Herein, we devised a straightforward technique to fabricate a novel class of physically cross-linked nanogels via a self-assembly process in water involving α-cyclodextrin and a mannose molecule that was hydrophobically modified using an alkyl chain. The alkyl chain-modified mannose was synthesized in five steps, starting with D-mannose. Subsequently, nanogels were formed by subjecting α-cyclodextrin and the hydrophobically modified mannose to magnetic stirring in water. By adjusting the mole ratio between the hydrophobically modified mannose and α-cyclodextrin, nanogels with an average 100-150 nm diameter were obtained. Physicochemical and structural analyses by 1H NMR and X-ray diffraction unveiled a supramolecular and hierarchical mechanism underlying the creation of these nanogels. The proposed mechanism of nanogel formation involves two distinct steps: initial interaction of hydrophobically modified mannose with α-cyclodextrin resulting in the formation of inclusion complexes, followed by supramolecular interactions among these complexes, ultimately leading to nanogel formation after 72 h of stirring. We demonstrated the nanogels' ability to encapsulate a short peptide ([p-tBuF2, R5]SHf) as a water-soluble drug model. This discovery holds promise for potentially utilizing these nanogels in drug delivery applications.
Collapse
Affiliation(s)
- Archana Sumohan Pillai
- Département de Chimie, École Normale Supérieure-PSL University Paris, France; Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris, 75005 Paris, France
| | | | - Yasmine Ayadi
- Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris, 75005 Paris, France
| | - Laurent Cattiaux
- Département de Chimie, École Normale Supérieure-PSL University Paris, France
| | - Ali Ladram
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, IBPS, BIOSIPE, F-75252 Paris, France
| | - Christophe Piesse
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, IBPS, Plateforme d'Ingénierie des Protéines-Service de Synthèse Peptidique, F-75252 Paris, France
| | - Benoit Baptiste
- Sorbonne Université, CNRS, UMR 7590, IMPMC, IRD, MNHN, F-75252 Paris, France
| | - Jean-François Gallard
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Centre de Recherche de Gif-sur-Yvette, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette, France
| | - Jean-Maurice Mallet
- Département de Chimie, École Normale Supérieure-PSL University Paris, France
| | - Kawthar Bouchemal
- Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris, 75005 Paris, France.
| |
Collapse
|
4
|
Cai Y, Si Z, Jiang Y, Ye M, Wang F, Yang X, Yu J, Gao X, Liu W. Structure-activity relationship of low molecular weight Astragalus membranaceus polysaccharides produced by Bacteroides. Carbohydr Polym 2023; 316:121036. [PMID: 37321731 DOI: 10.1016/j.carbpol.2023.121036] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/10/2023] [Accepted: 05/16/2023] [Indexed: 06/17/2023]
Abstract
Astragalus membranaceus polysaccharides (APS) possess significant biological activities, such as anti-tumor, antiviral, and immunomodulatory activities. However, there is still a lack of research on the structure-activity relationship of APS. In this paper, two carbohydrate-active enzymes from Bacteroides in living organisms were used to prepare degradation products. The degradation products were divided into APS-A1, APS-G1, APS-G2, and APS-G3 according to molecular weight. Structural analysis showed that all degradation products had an α-1,4-linked glucose backbone, but APS-A1 and APS-G3 also had branched chains of α-1,6-linked galactose or arabinogalacto-oligosaccharide. In vitro, immunomodulatory activity evaluation results indicated that APS-A1 and APS-G3 had better immunomodulatory activity, while the immunomodulatory activities of APS-G1 and APS-G2 were comparatively weaker. Molecular interaction detection showed that APS-A1 and APS-G3 could bind to toll-like receptors-4 (TLR-4) with a binding constant of 4.6 × 10-5 and 9.4 × 10-6, respectively, while APS-G1 and APS-G2 failed to bind to TLR-4. Therefore, the branched chains of galactose or arabinogalacto-oligosaccharide played a crucial role in the immunomodulatory activity of APS.
Collapse
Affiliation(s)
- Yang Cai
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, College of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Zhenyuan Si
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, College of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Ying Jiang
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, College of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Meng Ye
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, College of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Feng Wang
- Simcere Pharmaceutical Group Limited, Nanjing 210042, PR China
| | - Xiaobing Yang
- Biology and Medicine Department, Jiangsu Industrial Technology Research Institute, Nanjing 210031, PR China
| | - Juping Yu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, College of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Xiangdong Gao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, College of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Wei Liu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, College of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
5
|
Shahidi M, Abazari O, Dayati P, Reza JZ, Modarressi MH, Tofighi D, Haghiralsadat BF, Oroojalian F. Using chitosan-stabilized, hyaluronic acid-modified selenium nanoparticles to deliver CD44-targeted PLK1 siRNAs for treating bladder cancer. Nanomedicine (Lond) 2023; 18:259-277. [PMID: 37125618 DOI: 10.2217/nnm-2022-0198] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
Aims: Achieving an effective biocompatible system for siRNAs delivery to the tumor site remains a significant challenge. Materials & methods: Selenium nanoparticles (SeNPs) modified by chitosan (CS) and hyaluronic acid (HA) were fabricated for PLK1 siRNAs (siPLK1) delivery to the bladder cancer cells. The HA-CS-SeNP@siPLK1 efficacy was evaluated using in vitro and in vivo models. Results: HA-CS-SeNP@siPLK1 was selectively internalized into T24 cells through clathrin-mediated endocytosis. Treatment with HA-CS-SeNP@siPLK1 successfully silenced the PLK1 gene, inhibited cell proliferation and induced cell cycle arrest in vitro. HA-CS-SeNP@siPLK1 could also inhibit tumor growth in vivo without causing systemic toxicity. Conclusion: Our results suggest that HA-CS-SeNPs may provide a good vehicle for delivering siPLK1 to the bladder tumor site.
Collapse
Affiliation(s)
- Maryamsadat Shahidi
- Department of Clinical Biochemistry, School of Medicine, Shahid Sadoughi University of Medical Sciences & Health Services, Yazd, 89151, Iran
| | - Omid Abazari
- Department of Clinical Biochemistry, School of Medicine, Shahid Sadoughi University of Medical Sciences & Health Services, Yazd, 89151, Iran
| | - Parisa Dayati
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, 14115, Iran
| | - Javad Zavar Reza
- Department of Clinical Biochemistry, School of Medicine, Shahid Sadoughi University of Medical Sciences & Health Services, Yazd, 89151, Iran
| | - Mohammad Hossein Modarressi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, 14176, Iran
| | - Davood Tofighi
- Department of Psychology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Bibi Fatemeh Haghiralsadat
- Medical Nanotechnology & Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, 89151, Iran
| | - Fatemeh Oroojalian
- Department of Advanced Technologies, School of Medicine, North Khorasan University of Medical Sciences, Bojnūrd, 94149, Iran
- Natural Products & Medicinal Plants Research Center, North Khorasan University of Medical Sciences Bojnūrd, 94149, Iran
| |
Collapse
|
6
|
Diaz-Salmeron R, Cailleau C, Denis S, Ponchel G, Bouchemal K. Hyaluronan nanoplatelets exert an intrinsic anti-inflammatory activity in a rat model of bladder painful syndrome/interstitial cystitis. J Control Release 2023; 356:434-447. [PMID: 36921722 DOI: 10.1016/j.jconrel.2023.03.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/16/2023]
Abstract
Glycosaminoglycan (GAG) replenishment therapy consists of the instillation of GAG solutions directly in the bladder to alleviate Bladder Painful Syndrome/Interstitial Cystitis (BPS/IC). However, several issues were reported with this strategy because the GAG solutions are rapidly eliminated from the bladder by spontaneous voiding, and GAG have low bioadhesive behaviors. Herein, GAG nanomaterials with typical flattened morphology were obtained by a self-assembly process. The formation mechanism of those nanomaterials, denoted as nanoplatelets, involves the interaction of α-cyclodextrin cavity and alkyl chains covalently grafted on the GAG. Three GAG were used in this investigation, hyaluronan (HA), chondroitin sulfate (CS), and heparin (HEP). HA NP showed the best anti-inflammatory activity in an LPS-induced in vitro inflammation model of macrophages. They also exhibited the best therapeutic efficacy in a BPS/IC rat inflammation model. Histological examinations of the bladders revealed that HA NP significantly reduced bladder inflammation and regenerated the bladder mucosa. This investigation could open new perspectives to alleviate BPS/IC through GAG replenishment therapy.
Collapse
Affiliation(s)
| | | | - Stéphanie Denis
- Université Paris-Saclay, CNRS UMR 8612, IGPS, 91400 Orsay, France
| | - Gilles Ponchel
- Université Paris-Saclay, CNRS UMR 8612, IGPS, 91400 Orsay, France
| | - Kawthar Bouchemal
- Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris, 75005 Paris, France.
| |
Collapse
|
7
|
Diaz-Salmeron R, Toussaint B, Cailleau C, Ponchel G, Bouchemal K. Morphology‐Dependent Bioadhesion and Bioelimination of Hyaluronan Particles Administered in the Bladder. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202100138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Raul Diaz-Salmeron
- Institut Galien Paris Saclay, CNRS UMR 8612 Université Paris-Saclay 92296 Châtenay-Malabry France
| | - Balthazar Toussaint
- Institut Galien Paris Saclay, CNRS UMR 8612 Université Paris-Saclay 92296 Châtenay-Malabry France
| | - Catherine Cailleau
- Institut Galien Paris Saclay, CNRS UMR 8612 Université Paris-Saclay 92296 Châtenay-Malabry France
| | - Gilles Ponchel
- Institut Galien Paris Saclay, CNRS UMR 8612 Université Paris-Saclay 92296 Châtenay-Malabry France
| | - Kawthar Bouchemal
- Institut Galien Paris Saclay, CNRS UMR 8612 Université Paris-Saclay 92296 Châtenay-Malabry France
| |
Collapse
|
8
|
Hadji H, Bouchemal K. Advances in the treatment of inflammatory bowel disease: Focus on polysaccharide nanoparticulate drug delivery systems. Adv Drug Deliv Rev 2022; 181:114101. [PMID: 34999122 DOI: 10.1016/j.addr.2021.114101] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 02/07/2023]
Abstract
The complex pathogenesis of inflammatory bowel disease (IBD) explains the several hurdles for finding an efficient approach to cure it. Nowadays, therapeutic protocols aim to reduce inflammation during the hot phase or maintain remission during the cold phase. Nonetheless, these drugs suffer from severe side effects or poor efficacy due to low bioavailability in the inflamed region of the intestinal tract. New protocols based on antibodies that target proinflammatory cytokines are clinically relevant. However, besides being expensive, their use is associated with a primary nonresponse or a loss of response following a long administration period. Accordingly, many researchers exploited the physiological changes of the mucosal barrier for designing nanoparticulate drug delivery systems to target inflamed tissues. Others exploited biocompatibility and relative affordability of polysaccharides to test their intrinsic anti-inflammatory and healing properties in IBD models. This critical review updates state of the art on advances in IBD treatment. Data on using polysaccharide nanoparticulate drug delivery systems for IBD treatment are reviewed and discussed.
Collapse
Affiliation(s)
- Hicheme Hadji
- Institut Galien Paris Saclay, CNRS UMR 8612, Université Paris-Saclay, Faculté de Pharmacie, 5 rue J-B Clément, 92296 Châtenay-Malabry, France
| | - Kawthar Bouchemal
- Institut Galien Paris Saclay, CNRS UMR 8612, Université Paris-Saclay, Faculté de Pharmacie, 5 rue J-B Clément, 92296 Châtenay-Malabry, France.
| |
Collapse
|
9
|
Hadji H, Bouchemal K. Effect of micro- and nanoparticle shape on biological processes. J Control Release 2021; 342:93-110. [PMID: 34973308 DOI: 10.1016/j.jconrel.2021.12.032] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 12/15/2022]
Abstract
In the drug delivery field, there is beyond doubt that the shape of micro- and nanoparticles (M&NPs) critically affects their biological fate. Herein, following an introduction describing recent technological advances for designing nonspherical M&NPs, we highlight the role of particle shape in cell capture, subcellular distribution, intracellular drug delivery, and cytotoxicity. Then, we discuss theoretical approaches for understanding the effect of particle shape on internalization by the cell membrane. Subsequently, recent advances on shape-dependent behaviors of M&NPs in the systemic circulation are detailed. In particular, the interaction of M&NPs with blood proteins, biodistribution, and circulation under flow conditions are analyzed. Finally, the hurdles and future directions for developing nonspherical M&NPs are underscored.
Collapse
Affiliation(s)
- Hicheme Hadji
- Université Paris-Saclay, Institut Galien Paris Saclay, CNRS UMR 8612, 92296 Châtenay-Malabry, France
| | - Kawthar Bouchemal
- Université Paris-Saclay, Institut Galien Paris Saclay, CNRS UMR 8612, 92296 Châtenay-Malabry, France.
| |
Collapse
|