1
|
Li R, Gao H, Zhang R, Zhang B, Wang X, Zhang X, Li R. Biocompatible formulation of a hydrophobic antimicrobial peptide L30 through nanotechnology principles and its potential role in mouse pneumonia model infected with Staphylococcus aureus. Colloids Surf B Biointerfaces 2024; 236:113823. [PMID: 38442502 DOI: 10.1016/j.colsurfb.2024.113823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/07/2024]
Abstract
Hydrophobic antimicrobial peptide L30, a potential antibiotic candidate, has poor water solubility and hemolytic activity. Herein, a biocompatible nano-formulation composed of liposomes and dendritic mesoporous silica encapsulation (LDMSNs@L30) was constructed for L30 to solve the limits for its clinical development. The characterization, antimicrobial activity and therapeutic effect of LDMSNs@L30 on Staphylococcus aureus 9 (cfr+) infected mice models were investigated. LDMSNs@L30 displayed a smooth, spherical, and monodisperse nanoparticle with a hydrodynamic diameter of 177.40 nm, an encapsulation rate of 56.13%, a loading efficiency of 32.26%, a release rate of 66.5%, and effective slow-release of L30. Compared with free L30, the formulation could significantly increase the solubility of L30 in PBS with the maximum concentration from 8 μg/mL to 2.25 mg/mL and decrease the hemolytic activity of hydrophobic peptide L30 with the HC5 from 65.36 μg/mL to more than 500 μg/mL. The nano delivery system LDMSNs@L30 also exhibited higher therapeutic effects on mice models infected with S. aureus 9 (cfr+) than those of free L30 after 7 days of treatment by reducing the lung inflammation and the inflammatory cytokines levels in plasma, showing better health score and pulmonary pathological improvement. Our research suggests that nano-formulation can be expected to be a promising strategy for peptide drugs in therapeutic applications.
Collapse
Affiliation(s)
- Ruihua Li
- Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, Henan University of Technology, Zhengzhou, Henan 450001, PR China; College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Huiping Gao
- Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, Henan University of Technology, Zhengzhou, Henan 450001, PR China; College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Ruiling Zhang
- Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, Henan University of Technology, Zhengzhou, Henan 450001, PR China; School of Economics and Trade, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Beibei Zhang
- Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, Henan University of Technology, Zhengzhou, Henan 450001, PR China; College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Xueqin Wang
- Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, Henan University of Technology, Zhengzhou, Henan 450001, PR China; College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Xinhui Zhang
- Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, Henan University of Technology, Zhengzhou, Henan 450001, PR China; College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Ruifang Li
- Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, Henan University of Technology, Zhengzhou, Henan 450001, PR China; College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan 450001, PR China.
| |
Collapse
|
2
|
Chen S, Zhu F, Nie Z, Yang C, Yang J, He J, Tan X, Liu X, Zhang J, Zhao Y. pH-Activatable Charge-Reversal Polymer-Based Nanocarriers for Targeted Delivery of Antihepatoma Compound. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:13588-13598. [PMID: 37703860 DOI: 10.1021/acs.langmuir.3c01604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Chemotherapy is one of the available cancer treatments which has been successfully employed to prolong the survival of cancer patients. However, it remains a major challenge to develop effective chemotherapeutic agents by reducing off-target toxicity, improving bioavailability, and effectively prolonging blood circulation. The pH profile of tumor cells is abnormal to that of normal cells, making it a potential breakthrough for designing effective chemotherapeutic drug agents. Here, the pH-activatable charge-reversal supramolecular nanocarriers, named MI7-β-CD/SA NPs, were prepared through a simple and "green" constructive process. MI7-β-CD/SA NPs possess both pH-induced charge-reversal and disassembly properties that were exploited to investigate the loading, delivery, and pH-responsive controlled release of the antitumor compound celastrol (CSL). CSL@MI7-β-CD/SA NPs displayed low hemolysis, good biocompatibility, and targeted uptake. Furthermore, CSL@MI7-β-CD/SA NPs exhibited superior apoptosis rates against SMMC-7721 cell lines compared with CSL, when CSL@MI7-β-CD/SA NPs and CSL were administered at a mass concentration of 5.0 μg/mL, i.e., the CSL content in CSL@MI7-β-CD/SA NPs was relatively lower than that of intact CSL. We expected that MI7-β-CD/SA NPs featuring pH-triggered charge reversal could offer a promising controlled release strategy that would then facilitate the clinical conversion of antitumor drugs.
Collapse
Affiliation(s)
- Shuai Chen
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, People's Republic of China
| | - FangDao Zhu
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, People's Republic of China
| | - ZhengQuan Nie
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, People's Republic of China
| | - CuiTing Yang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, People's Republic of China
| | - JianMei Yang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, People's Republic of China
| | - Junnan He
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, People's Republic of China
| | - XiaoPing Tan
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, People's Republic of China
| | - XiaoQing Liu
- Shenzhen Kewode Technology Co., Ltd, Shenzhen 518028, People's Republic of China
| | - Jin Zhang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, People's Republic of China
| | - Yan Zhao
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, People's Republic of China
| |
Collapse
|
3
|
Gao F, Yu B, Cong H, Shen Y. Delivery process and effective design of vectors for cancer therapy. J Mater Chem B 2022; 10:6896-6921. [PMID: 36048171 DOI: 10.1039/d2tb01326f] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In recent years, the efficacy of nano-drugs has not been significantly better than that of the drugs themselves, mainly because nano-drugs enter the tumor vasculature, stay near the blood vessels, and cannot enter the tumor tissues or tumor cells to complete the drug delivery process. Although intratumor injection can significantly decrease this risk, the side effects are strong. The advent of drug delivery carrier materials offers an opportunity to avoid the side effects of systemic drug delivery and the damage caused by tumor resection, holding great promise for the future of cancer therapy. Here, we systematically review recent research advances in the classification of drug delivery carrier materials and the delivery process in drug delivery systems. This review is divided into several main sections, first, we summarize the classification of tumor drug carrier materials, including drug delivery vectors and gene delivery vectors, etc., which are introduced in detail, respectively. Then we describe the carrier materials to deliver the drug cascade and the transition pathways for drug delivery, including stabilization transitions, charge inversions, and size changes. Finally, we discuss the current design strategies and research progress of drug vectors and provide a summary and outlook. This review aims to summarize different drug delivery vehicles and delivery processes to provide ideas for effective cancer therapy.
Collapse
Affiliation(s)
- Fengyuan Gao
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China.
| | - Bing Yu
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China. .,State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Hailin Cong
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China. .,State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Youqing Shen
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China. .,Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| |
Collapse
|