1
|
Battaglia L, Dianzani C, Muntoni E, Marini E, Bozza A, Bordano V, Ferraris C, Garelli S, Valsania MC, Terreno E, Capozza M, Costanzo D, Capucchio MT, Hassan T, Pizzimenti S, Pettineo E, Di Muro M, Scorziello F. Ultrasmall solid lipid nanoparticles as a potential innovative delivery system for a drug combination against glioma. Nanomedicine (Lond) 2025; 20:37-52. [PMID: 39611709 DOI: 10.1080/17435889.2024.2434452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/22/2024] [Indexed: 11/30/2024] Open
Abstract
INTRODUCTION High grade gliomas are characterized by a very poor prognosis due to fatal relapses after surgery. Current chemotherapy is only a palliative care, while potential drug candidates are limited by poor overcoming of the blood-brain barrier. AIMS A suitable chemotherapeutic approach should be engineered to overcome both the altered blood-brain barrier in the glioma site, as well as the intact one in the brain adjacent to tumor zone, and to target the multiple factors influencing glioma proliferation, differentiation, migration, and angiogenesis. MATERIALS & METHODS In this experimental research, ultrasmall solid lipid nanoparticles were prepared owing to the temperature phase inversion technology and loaded with a specific drug combination made of paclitaxel, regorafenib, and nanoceria. RESULTS Such solid lipid nanoparticles demonstrated capability to inhibit glioma cell proliferation and migration, as well as angiogenesis in vitro. Moreover, relevant in vivo evidence assessed the accumulation of solid lipid nanoparticles in the glioma site of the F98/Fischer rat model, without causing any off-target toxicity. CONCLUSIONS Thus, promising results for glioma treatment were obtained with a technology characterized by safety and economy, allowing the perspective of successful scalability.
Collapse
Affiliation(s)
- Luigi Battaglia
- Department of Drug Science and Technology, University of Turin, Turin, Italy
- Nanostructured Interfaces and Surfaces (NIS) Interdepartmental Centre, University of Turin, Turin, Italy
| | - Chiara Dianzani
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Elisabetta Muntoni
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Elisabetta Marini
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Annalisa Bozza
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Valentina Bordano
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Chiara Ferraris
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Sara Garelli
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Maria Carmen Valsania
- Nanostructured Interfaces and Surfaces (NIS) Interdepartmental Centre, University of Turin, Turin, Italy
- Department of Chemistry, University of Turin, Turin, Italy
| | - Enzo Terreno
- Molecular & Preclinical Imaging Centers, Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Martina Capozza
- Molecular & Preclinical Imaging Centers, Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Diana Costanzo
- Molecular & Preclinical Imaging Centers, Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | | | - Talal Hassan
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
| | - Stefania Pizzimenti
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Elisa Pettineo
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | | | | |
Collapse
|
2
|
Mışraklı M, Rizzo SA, Bordano V, Bozza A, Ferraris L, Marini E, Muntoni E, Capucchio MT, Scomparin A, Battaglia L. Concanavalin a Grafted Nanoemulsions for Nasal Delivery: Preliminary Studies with Fluorescently Labelled Formulations. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4959. [PMID: 39459664 PMCID: PMC11509158 DOI: 10.3390/ma17204959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/27/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024]
Abstract
Nasal delivery is a non-invasive strategy for effective drug delivery. Nevertheless, in order to promote drug uptake by the nasal mucosa, it is fundamental to increase its residence time in the administration site. To this aim, nano-sized drug delivery systems are widely exploited. Within this context, the commercially available nanoemulsion for parenteral nutrition is a biocompatible, safe and clinically approved vehicle for drug delivery. Furthermore, the nanodroplet surface can be modified via a well-established protocol to graft Concavalin A, a lectin capable of improving the mucosal adhesion, by binding to the α-mannose and α-glucose residues of the mucosal glycocalyx. The obtained targeted formulation is able to induce haemagglutination, as opposite to non-modified nanoemulsion. Furthermore, the ConA grafting maintains the physicochemical properties of the nanodroplets (size~230 nm, Z < -35 mV) and does not interfere with the loading of the Rose Bengal fluorescent probe. Fluorescently labelled ConA grafted nanodroplets showed enhanced permeation and accumulation in ex vivo bovine nasal mucosa. This study is a proof of concept that Concanavalin A can be used to decorate the surface of nanodroplets, acting as a permeation promoter.
Collapse
Affiliation(s)
- Merve Mışraklı
- Faculty of Pharmacy, Ege University, Erzene Street, Ankara Avenue, No 172/98, 35040 Izmir, Türkiye;
| | - Sebastiano Antonio Rizzo
- Department of Drug Science and Technology, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy; (S.A.R.); (V.B.); (A.B.); (L.F.); (E.M.); (E.M.)
| | - Valentina Bordano
- Department of Drug Science and Technology, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy; (S.A.R.); (V.B.); (A.B.); (L.F.); (E.M.); (E.M.)
| | - Annalisa Bozza
- Department of Drug Science and Technology, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy; (S.A.R.); (V.B.); (A.B.); (L.F.); (E.M.); (E.M.)
| | - Luca Ferraris
- Department of Drug Science and Technology, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy; (S.A.R.); (V.B.); (A.B.); (L.F.); (E.M.); (E.M.)
| | - Elisabetta Marini
- Department of Drug Science and Technology, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy; (S.A.R.); (V.B.); (A.B.); (L.F.); (E.M.); (E.M.)
| | - Elisabetta Muntoni
- Department of Drug Science and Technology, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy; (S.A.R.); (V.B.); (A.B.); (L.F.); (E.M.); (E.M.)
| | - Maria Teresa Capucchio
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini, 2, 10095 Grugliasco, Italy;
| | - Anna Scomparin
- Department of Drug Science and Technology, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy; (S.A.R.); (V.B.); (A.B.); (L.F.); (E.M.); (E.M.)
| | - Luigi Battaglia
- Department of Drug Science and Technology, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy; (S.A.R.); (V.B.); (A.B.); (L.F.); (E.M.); (E.M.)
| |
Collapse
|
3
|
Bozza A, Bordano V, Marengo A, Muntoni E, Marini E, Lazzarato L, Dianzani C, Monge C, Rosa AC, Cangemi L, Valsania MC, Colitti B, Camisassa E, Battaglia L. Green Solid Lipid Nanoparticles by Fatty Acid Coacervation: An Innovative Nasal Delivery Tool for Drugs Targeting Cerebrovascular and Neurological Diseases. Pharmaceutics 2024; 16:1051. [PMID: 39204396 PMCID: PMC11360092 DOI: 10.3390/pharmaceutics16081051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/24/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
Cerebrovascular and neurological diseases are characterized by neuroinflammation, which alters the neurovascular unit, whose interaction with the choroid plexus is critical for maintaining brain homeostasis and producing cerebrospinal fluid. Dysfunctions in such process can lead to conditions such as idiopathic normal pressure hydrocephalus, a common disease in older adults. Potential pharmacological treatments, based upon intranasal administration, are worthy of investigation because they might improve symptoms and avoid surgery by overcoming the blood-brain barrier and avoiding hepatic metabolism. Nasal lipid nanocarriers, such as solid lipid nanoparticles, may increase the nasal retention and permeation of drugs. To this aim, green solid lipid nanoparticles, obtained by coacervation from natural soaps, are promising vehicles due to their specific lipid matrix composition and the unsaponifiable fraction, endowed with antioxidant and anti-inflammatory properties, and thus suitable for restoring the neurovascular unit function. In this experimental work, such green solid lipid nanoparticles, fully characterized from a physico-chemical standpoint, were loaded with a drug combination suitable for reverting hydrocephalus symptoms, allowing us to obtain a non-toxic formulation, a reduction in the production of the cerebrospinal fluid in vitro, and a vasoprotective effect on an isolated vessel model. The pharmacokinetics and biodistribution of fluorescently labelled nanoparticles were also tested in animal models.
Collapse
Affiliation(s)
- Annalisa Bozza
- Department of Drug Science and Technology, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy; (V.B.); (A.M.); (E.M.); (E.M.); (L.L.); (C.D.); (C.M.); (A.C.R.); (L.C.); (L.B.)
| | - Valentina Bordano
- Department of Drug Science and Technology, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy; (V.B.); (A.M.); (E.M.); (E.M.); (L.L.); (C.D.); (C.M.); (A.C.R.); (L.C.); (L.B.)
| | - Arianna Marengo
- Department of Drug Science and Technology, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy; (V.B.); (A.M.); (E.M.); (E.M.); (L.L.); (C.D.); (C.M.); (A.C.R.); (L.C.); (L.B.)
| | - Elisabetta Muntoni
- Department of Drug Science and Technology, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy; (V.B.); (A.M.); (E.M.); (E.M.); (L.L.); (C.D.); (C.M.); (A.C.R.); (L.C.); (L.B.)
| | - Elisabetta Marini
- Department of Drug Science and Technology, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy; (V.B.); (A.M.); (E.M.); (E.M.); (L.L.); (C.D.); (C.M.); (A.C.R.); (L.C.); (L.B.)
| | - Loretta Lazzarato
- Department of Drug Science and Technology, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy; (V.B.); (A.M.); (E.M.); (E.M.); (L.L.); (C.D.); (C.M.); (A.C.R.); (L.C.); (L.B.)
| | - Chiara Dianzani
- Department of Drug Science and Technology, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy; (V.B.); (A.M.); (E.M.); (E.M.); (L.L.); (C.D.); (C.M.); (A.C.R.); (L.C.); (L.B.)
| | - Chiara Monge
- Department of Drug Science and Technology, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy; (V.B.); (A.M.); (E.M.); (E.M.); (L.L.); (C.D.); (C.M.); (A.C.R.); (L.C.); (L.B.)
| | - Arianna Carolina Rosa
- Department of Drug Science and Technology, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy; (V.B.); (A.M.); (E.M.); (E.M.); (L.L.); (C.D.); (C.M.); (A.C.R.); (L.C.); (L.B.)
| | - Luigi Cangemi
- Department of Drug Science and Technology, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy; (V.B.); (A.M.); (E.M.); (E.M.); (L.L.); (C.D.); (C.M.); (A.C.R.); (L.C.); (L.B.)
| | - Maria Carmen Valsania
- Department of Chemistry, University of Turin, Via Pietro Giuria 7, 10125 Torino, Italy;
- Nanostructured Interfaces and Surfaces (NIS) Interdepartmental Centre, University of Turin, Via Quarello 15/a, 10135 Torino, Italy
| | - Barbara Colitti
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini, 2, 10095 Grugliasco, Italy;
| | | | - Luigi Battaglia
- Department of Drug Science and Technology, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy; (V.B.); (A.M.); (E.M.); (E.M.); (L.L.); (C.D.); (C.M.); (A.C.R.); (L.C.); (L.B.)
- Nanostructured Interfaces and Surfaces (NIS) Interdepartmental Centre, University of Turin, Via Quarello 15/a, 10135 Torino, Italy
| |
Collapse
|
4
|
Dianzani C, Bozza A, Bordano V, Cangemi L, Ferraris C, Foglietta F, Monge C, Gallicchio M, Pizzimenti S, Marini E, Muntoni E, Valsania MC, Battaglia L. Cell Membrane Fragment-Wrapped Parenteral Nanoemulsions: A New Drug Delivery Tool to Target Gliomas. Cells 2024; 13:641. [PMID: 38607080 PMCID: PMC11011487 DOI: 10.3390/cells13070641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/28/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024] Open
Abstract
Poor prognosis in high-grade gliomas is mainly due to fatal relapse after surgical resection in the absence of efficient chemotherapy, which is severely hampered by the blood-brain barrier. However, the leaky blood-brain-tumour barrier forms upon tumour growth and vascularization, allowing targeted nanocarrier-mediated drug delivery. The homotypic targeting ability of cell-membrane fragments obtained from cancer cells means that these fragments can be exploited to this aim. In this experimental work, injectable nanoemulsions, which have a long history of safe clinic usage, have been wrapped in glioma-cell membrane fragments via co-extrusion to give targeted, homogeneously sized, sterile formulations. These systems were then loaded with three different chemotherapeutics, in the form of hydrophobic ion pairs that can be released into the target site thanks to interactions with physiological components. The numerous assays performed in two-dimensional (2D) and three-dimensional (3D) cell models demonstrate that the proposed approach is a versatile drug-delivery platform with chemo-tactic properties towards glioma cells, with adhesive interactions between the target cell and the cell membrane fragments most likely being responsible for the effect. This approach's promising translational perspectives towards personalized nanomedicine mean that further in vivo studies are foreseen for the future.
Collapse
Affiliation(s)
- Chiara Dianzani
- Department of Drug Science and Technology, University of Turin, via Pietro Giuria 9, 10124 Turin, Italy; (C.D.); (A.B.); (V.B.); (L.C.); (C.F.); (F.F.); (C.M.); (M.G.); (E.M.); (E.M.)
| | - Annalisa Bozza
- Department of Drug Science and Technology, University of Turin, via Pietro Giuria 9, 10124 Turin, Italy; (C.D.); (A.B.); (V.B.); (L.C.); (C.F.); (F.F.); (C.M.); (M.G.); (E.M.); (E.M.)
| | - Valentina Bordano
- Department of Drug Science and Technology, University of Turin, via Pietro Giuria 9, 10124 Turin, Italy; (C.D.); (A.B.); (V.B.); (L.C.); (C.F.); (F.F.); (C.M.); (M.G.); (E.M.); (E.M.)
| | - Luigi Cangemi
- Department of Drug Science and Technology, University of Turin, via Pietro Giuria 9, 10124 Turin, Italy; (C.D.); (A.B.); (V.B.); (L.C.); (C.F.); (F.F.); (C.M.); (M.G.); (E.M.); (E.M.)
| | - Chiara Ferraris
- Department of Drug Science and Technology, University of Turin, via Pietro Giuria 9, 10124 Turin, Italy; (C.D.); (A.B.); (V.B.); (L.C.); (C.F.); (F.F.); (C.M.); (M.G.); (E.M.); (E.M.)
| | - Federica Foglietta
- Department of Drug Science and Technology, University of Turin, via Pietro Giuria 9, 10124 Turin, Italy; (C.D.); (A.B.); (V.B.); (L.C.); (C.F.); (F.F.); (C.M.); (M.G.); (E.M.); (E.M.)
| | - Chiara Monge
- Department of Drug Science and Technology, University of Turin, via Pietro Giuria 9, 10124 Turin, Italy; (C.D.); (A.B.); (V.B.); (L.C.); (C.F.); (F.F.); (C.M.); (M.G.); (E.M.); (E.M.)
| | - Margherita Gallicchio
- Department of Drug Science and Technology, University of Turin, via Pietro Giuria 9, 10124 Turin, Italy; (C.D.); (A.B.); (V.B.); (L.C.); (C.F.); (F.F.); (C.M.); (M.G.); (E.M.); (E.M.)
| | - Stefania Pizzimenti
- Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, 10124 Turin, Italy;
| | - Elisabetta Marini
- Department of Drug Science and Technology, University of Turin, via Pietro Giuria 9, 10124 Turin, Italy; (C.D.); (A.B.); (V.B.); (L.C.); (C.F.); (F.F.); (C.M.); (M.G.); (E.M.); (E.M.)
| | - Elisabetta Muntoni
- Department of Drug Science and Technology, University of Turin, via Pietro Giuria 9, 10124 Turin, Italy; (C.D.); (A.B.); (V.B.); (L.C.); (C.F.); (F.F.); (C.M.); (M.G.); (E.M.); (E.M.)
| | - Maria Carmen Valsania
- Department of Chemistry, University of Turin, Via Quarello 15/a, 10135 Turin, Italy;
- Nanostructured Interfaces and Surfaces (NIS) Interdepartmental Centre, University of Turin, 10124 Turin, Italy
| | - Luigi Battaglia
- Department of Drug Science and Technology, University of Turin, via Pietro Giuria 9, 10124 Turin, Italy; (C.D.); (A.B.); (V.B.); (L.C.); (C.F.); (F.F.); (C.M.); (M.G.); (E.M.); (E.M.)
- Nanostructured Interfaces and Surfaces (NIS) Interdepartmental Centre, University of Turin, 10124 Turin, Italy
| |
Collapse
|
5
|
Fang L, Li J, Cheng H, Liu H, Zhang C. Dual fluorescence images, transport pathway, and blood-brain barrier penetration of B-Met-W/O/W SE. Int J Pharm 2024; 652:123854. [PMID: 38280499 DOI: 10.1016/j.ijpharm.2024.123854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 01/07/2024] [Accepted: 01/23/2024] [Indexed: 01/29/2024]
Abstract
Borneol is an aromatic traditional Chinese medicine that can improve the permeability of the blood-brain barrier (BBB), enter the brain, and promote the brain tissue distribution of many other drugs. In our previous study, borneol-metformin hydrochloride water/oil/water composite submicron emulsion (B-Met-W/O/W SE) was prepared using borneol and SE to promote BBB penetration, which significantly increased the brain distribution of Met. However, the dynamic images, transport pathway (uptake and efflux), promotion of BBB permeability, and mechanisms of B-Met-W/O/W SE before and after entering cells have not been clarified. In this study, rhodamine B and coumarin-6 were selected as water-soluble and oil-soluble fluorescent probes to prepare B-Met-W/O/W dual-fluorescent SE (B-Met-W/O/W DFSE) with concentric circle imaging. B-Met-W/O/W SE can be well taken up by brain microvascular endothelial cells (BMECs). The addition of three inhibitors (chlorpromazine hydrochloride, methyl-β-cyclodextrin, and amiloride hydrochloride) indicated that its main pathway may be clathrin-mediated and fossa protein-mediated endocytosis. Meanwhile, B-Met-W/O/W SE was obviously shown to inhibit the efflux of BMECs. Next, BMECs were cultured in the Transwell chamber to establish a BBB model, and Western blot was employed to detect the protein expressions of Occludin, Zona Occludens 1 (ZO-1), and p-glycoprotein (P-gp) after B-Met-W/O/W SE treatment. The results showed that B-Met-W/O/W SE significantly down-regulated the expression of Occludin, ZO-1, and P-gp, which increased the permeability of BBB, promoted drug entry into the brain through BBB, and inhibited BBB efflux. Furthermore, 11 differentially expressed genes (DEGs) and 7 related signaling pathways in BMECs treated with B-W/O/W SE were detected by transcriptome sequencing and verified by quantitative real-time polymerase chain reaction (qRT-PCR). These results provide a scientific experimental basis for the dynamic monitoring, transmembrane transport mode, and permeation-promoting mechanism of B-Met-W/O/W SE as a new brain-targeting drug delivery system.
Collapse
Affiliation(s)
- Liang Fang
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China; Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei 230012, Anhui, China; School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China; Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei 230012, Anhui, China; Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Junying Li
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China; Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei 230012, Anhui, China; School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China; Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei 230012, Anhui, China; Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Hongyan Cheng
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China; Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei 230012, Anhui, China; School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China; Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei 230012, Anhui, China; Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Huanhuan Liu
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China; Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei 230012, Anhui, China; School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China; Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei 230012, Anhui, China; Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Caiyun Zhang
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China; Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei 230012, Anhui, China; School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China; Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei 230012, Anhui, China; Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, China.
| |
Collapse
|
6
|
Foglietta F, Bozza A, Ferraris C, Cangemi L, Bordano V, Serpe L, Martina K, Lazzarato L, Pizzimenti S, Grattarola M, Cucci MA, Dianzani C, Battaglia L. Surface Functionalised Parenteral Nanoemulsions for Active and Homotypic Targeting to Melanoma. Pharmaceutics 2023; 15:pharmaceutics15051358. [PMID: 37242600 DOI: 10.3390/pharmaceutics15051358] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/18/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Despite recent progressions in cancer genomic and immunotherapies, advanced melanoma still represents a life threat, pushing to optimise new targeted nanotechnology approaches for specific drug delivery to the tumour. To this aim, owing to their biocompatibility and favourable technological features, injectable lipid nanoemulsions were functionalised with proteins owing to two alternative approaches: transferrin was chemically grafted for active targeting, while cancer cell membrane fragments wrapping was used for homotypic targeting. In both cases, protein functionalisation was successfully achieved. Targeting efficiency was preliminarily evaluated using flow cytometry internalisation studies in two-dimensional cellular models, after fluorescence labelling of formulations with 6-coumarin. The uptake of cell-membrane-fragment-wrapped nanoemulsions was higher compared to uncoated nanoemulsions. Instead, the effect of transferrin grafting was less evident in serum-enriched medium, since such ligand probably undergoes competition with the endogenous protein. Moreover, a more pronounced internalisation was achieved when a pegylated heterodimer was employed for conjugation (p < 0.05).
Collapse
Affiliation(s)
- Federica Foglietta
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, 10124 Torino, Italy
| | - Annalisa Bozza
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, 10124 Torino, Italy
| | - Chiara Ferraris
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, 10124 Torino, Italy
| | - Luigi Cangemi
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, 10124 Torino, Italy
| | - Valentina Bordano
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, 10124 Torino, Italy
| | - Loredana Serpe
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, 10124 Torino, Italy
| | - Katia Martina
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, 10124 Torino, Italy
| | - Loretta Lazzarato
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, 10124 Torino, Italy
| | - Stefania Pizzimenti
- Dipartimento di Scienze Cliniche e Biologiche, Università degli Studi di Torino, Corso Raffaello 30, 10125 Torino, Italy
| | - Margherita Grattarola
- Dipartimento di Scienze Cliniche e Biologiche, Università degli Studi di Torino, Corso Raffaello 30, 10125 Torino, Italy
| | - Marie Angele Cucci
- Dipartimento di Scienze Cliniche e Biologiche, Università degli Studi di Torino, Corso Raffaello 30, 10125 Torino, Italy
| | - Chiara Dianzani
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, 10124 Torino, Italy
| | - Luigi Battaglia
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, 10124 Torino, Italy
- Nanostructured Interfaces and Surfaces (NIS) Interdepartmental Centre, Università degli Studi di Torino, 10125 Torino, Italy
| |
Collapse
|
7
|
Nasal administration of a temozolomide-loaded thermoresponsive nanoemulsion reduces tumor growth in a preclinical glioblastoma model. J Control Release 2023; 355:343-357. [PMID: 36731799 DOI: 10.1016/j.jconrel.2023.01.070] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/19/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023]
Abstract
Glioblastoma (GB) is the worst and most common primary brain tumor. Temozolomide (TMZ), an alkylating agent, is widely used for treating primary and recurrent high-grade gliomas. However, at least 50% of TMZ treated patients do not respond to TMZ and the development of chemoresistance is a major problem. Here, we designed a lipid nanoemulsion containing a thermoresponsive polymer (poloxamer 407) aiming to improve TMZ release into the brain via nasal delivery. Increasing amounts of poloxamer 407 were added to preformed nanoemulsions (250 nm-range) obtained by spontaneous emulsification. The influence of the polymer concentration (from 2.5% to 12.5%) and temperature on viscosity was clearly evidenced. Such effect was also noticed on the mucoadhesiveness of formulations, as well as TMZ release rate and retention/permeation through nasal porcine mucosa using Franz-type diffusion cells. From these results, a formulation containing 10% of poloxamer (NTMZ-P10) was selected for further experiments by nasal route. A significantly higher TMZ amount was observed in the brain of rats from NTMZ-P10 in comparison with controls. Finally, our results show that formulation reduced significantly tumor growth by three-fold: 103.88 ± 43.67 mm3 (for NTMZ-P10) and 303.28 ± 95.27 mm3 (control). Overall, these results suggest the potential of the thermoresponsive formulation, administered by the non-invasive nasal route, as a future effective glioblastoma treatment.
Collapse
|
8
|
Perrelli A, Bozza A, Ferraris C, Osella S, Moglia A, Mioletti S, Battaglia L, Retta SF. Multidrug-Loaded Lipid Nanoemulsions for the Combinatorial Treatment of Cerebral Cavernous Malformation Disease. Biomedicines 2023; 11:biomedicines11020480. [PMID: 36831015 PMCID: PMC9953270 DOI: 10.3390/biomedicines11020480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/04/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023] Open
Abstract
Cerebral cavernous malformation (CCM) or cavernoma is a major vascular disease of genetic origin, whose main phenotypes occur in the central nervous system, and is currently devoid of pharmacological therapeutic strategies. Cavernomas can remain asymptomatic during a lifetime or manifest with a wide range of symptoms, including recurrent headaches, seizures, strokes, and intracerebral hemorrhages. Loss-of-function mutations in KRIT1/CCM1 are responsible for more than 50% of all familial cases, and have been clearly shown to affect cellular junctions, redox homeostasis, inflammatory responses, and angiogenesis. In this study, we investigated the therapeutic effects of multidrug-loaded lipid nanoemulsions in rescuing the pathological phenotype of CCM disease. The pro-autophagic rapamycin, antioxidant avenanthramide, and antiangiogenic bevacizumab were loaded into nanoemulsions, with the aim of reducing the major molecular dysfunctions associated with cavernomas. Through Western blot analysis of biomarkers in an in vitro CCM model, we demonstrated that drug-loaded lipid nanoemulsions rescue antioxidant responses, reactivate autophagy, and reduce the effect of pro-angiogenic factors better than the free drugs. Our results show the importance of developing a combinatorial preventive and therapeutic approach to reduce the risk of lesion formation and inhibit or completely revert the multiple hallmarks that characterize the pathogenesis and progression of cavernomas.
Collapse
Affiliation(s)
- Andrea Perrelli
- Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, TO, Italy
- CCM Italia Research Network, National Coordination Center at the Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, TO, Italy
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, Rochester, NY 14620, USA
| | - Annalisa Bozza
- Department of Drug Science and Technology, University of Torino, 10125 Torino, TO, Italy
| | - Chiara Ferraris
- Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, TO, Italy
- CCM Italia Research Network, National Coordination Center at the Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, TO, Italy
| | - Sara Osella
- San Giovanni Bosco Hospital, University of Torino, 10154 Torino, TO, Italy
| | - Andrea Moglia
- Department of Agricultural, Forest and Food Sciences, University of Torino, 10095 Grugliasco, TO, Italy
| | - Silvia Mioletti
- Department of Veterinary Sciences, University of Torino, 10095 Grugliasco, TO, Italy
| | - Luigi Battaglia
- Department of Drug Science and Technology, University of Torino, 10125 Torino, TO, Italy
- Nanostructured Interfaces and Surfaces (NIS) Interdepartmental Centre, University of Torino, 10124 Torino, TO, Italy
- Correspondence: (L.B.); (S.F.R.)
| | - Saverio Francesco Retta
- Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, TO, Italy
- CCM Italia Research Network, National Coordination Center at the Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, TO, Italy
- Correspondence: (L.B.); (S.F.R.)
| |
Collapse
|
9
|
Sarvepalli S, Parvathaneni V, Chauhan G, Shukla SK, Gupta V. Inhaled Indomethacin-Loaded Liposomes as Potential Therapeutics against Non-Small Cell Lung Cancer (NSCLC). Pharm Res 2022; 39:2801-2815. [DOI: 10.1007/s11095-022-03392-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/06/2022] [Indexed: 11/29/2022]
|
10
|
Petrenko D, Chubarev V, Syzrantsev N, Ismail N, Merkulov V, Sologova S, Grigorevskikh E, Smolyarchuk E, Alyautdin R. Temozolomide Efficacy and Metabolism: The Implicit Relevance of Nanoscale Delivery Systems. Molecules 2022; 27:3507. [PMID: 35684445 PMCID: PMC9181940 DOI: 10.3390/molecules27113507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 11/16/2022] Open
Abstract
The most common primary malignant brain tumors in adults are gliomas. Glioblastoma is the most prevalent and aggressive tumor subtype of glioma. Current standards for the treatment of glioblastoma include a combination of surgical, radiation, and drug therapy methods. The drug therapy currently includes temozolomide (TMZ), an alkylating agent, and bevacizumab, a recombinant monoclonal IgG1 antibody that selectively binds to and inhibits the biological activity of vascular endothelial growth factor. Supplementation of glioblastoma radiation therapy with TMZ increased patient survival from 12.1 to 14.6 months. The specificity of TMZ effect on brain tumors is largely determined by special aspects of its pharmacokinetics. TMZ is an orally bioavailable prodrug, which is well absorbed from the gastrointestinal tract and is converted to its active alkylating metabolite 5-(3-methyl triazen-1-yl)imidazole-4-carbozamide (MTIC) spontaneously in physiological condition that does not require hepatic involvement. MTIC produced in the plasma is not able to cross the BBB and is formed locally in the brain. A promising way to increase the effectiveness of TMZ chemotherapy for glioblastoma is to prevent its hydrolysis in peripheral tissues and thereby increase the drug concentration in the brain that nanoscale delivery systems can provide. The review discusses possible ways to increase the efficacy of TMZ using nanocarriers.
Collapse
Affiliation(s)
- Daria Petrenko
- Department of Pharmacology, Sechenov University, 119019 Moscow, Russia; (V.C.); (N.S.); (V.M.); (S.S.); (E.G.); (E.S.)
| | - Vladimir Chubarev
- Department of Pharmacology, Sechenov University, 119019 Moscow, Russia; (V.C.); (N.S.); (V.M.); (S.S.); (E.G.); (E.S.)
| | - Nikita Syzrantsev
- Department of Pharmacology, Sechenov University, 119019 Moscow, Russia; (V.C.); (N.S.); (V.M.); (S.S.); (E.G.); (E.S.)
| | - Nafeeza Ismail
- Department of Pharmacology, University Technology MARA, Kuala Lumpur 50450, Malaysia;
| | - Vadim Merkulov
- Department of Pharmacology, Sechenov University, 119019 Moscow, Russia; (V.C.); (N.S.); (V.M.); (S.S.); (E.G.); (E.S.)
- Scientific Centre for Expert Evaluation of Medicinal Products, 127051 Moscow, Russia
| | - Susanna Sologova
- Department of Pharmacology, Sechenov University, 119019 Moscow, Russia; (V.C.); (N.S.); (V.M.); (S.S.); (E.G.); (E.S.)
| | - Ekaterina Grigorevskikh
- Department of Pharmacology, Sechenov University, 119019 Moscow, Russia; (V.C.); (N.S.); (V.M.); (S.S.); (E.G.); (E.S.)
| | - Elena Smolyarchuk
- Department of Pharmacology, Sechenov University, 119019 Moscow, Russia; (V.C.); (N.S.); (V.M.); (S.S.); (E.G.); (E.S.)
| | - Renad Alyautdin
- Department of Pharmacology, Sechenov University, 119019 Moscow, Russia; (V.C.); (N.S.); (V.M.); (S.S.); (E.G.); (E.S.)
- Scientific Centre for Expert Evaluation of Medicinal Products, 127051 Moscow, Russia
| |
Collapse
|
11
|
Musumeci T, Di Benedetto G, Carbone C, Bonaccorso A, Amato G, Lo Faro MJ, Burgaletto C, Puglisi G, Bernardini R, Cantarella G. Intranasal Administration of a TRAIL Neutralizing Monoclonal Antibody Adsorbed in PLGA Nanoparticles and NLC Nanosystems: An In Vivo Study on a Mouse Model of Alzheimer's Disease. Biomedicines 2022; 10:985. [PMID: 35625722 PMCID: PMC9138905 DOI: 10.3390/biomedicines10050985] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that progressively compromises cognitive functions. Tumor necrosis factor (TNF)-Related Apoptosis Inducing Ligand (TRAIL), a proinflammatory cytokine belonging to the TNF superfamily, appears to be a key player in the inflammatory/immune orchestra of the AD brain. Despite the ability of an anti-TRAIL monoclonal antibody to reach the brain producing beneficial effects in AD mice, we attempted to develop such a TRAIL-neutralizing monoclonal antibody adsorbed on lipid and polymeric nanocarriers, for intranasal administration, in a valid approach to overcome issues related to both high dose and drug transport across the blood-brain barrier. The two types of nanomedicines produced showed physico-chemical characteristics appropriate for intranasal administration. As confirmed by enzyme-linked immunosorbent assay (ELISA), both nanomedicines were able to form a complex with the antibody with an encapsulation efficiency of ≈99%. After testing in vitro the immunoneutralizing properties of the nanomedicines, the latter were intranasally administered in AD mice. The antibody-nanocarrier complexes were detectable in the brain in substantial amounts at concentrations significantly higher compared to the free form of the anti-TRAIL antibody. These data support the use of nanomedicine as an optimal method for the delivery of the TRAIL neutralizing antibody to the brain through the nose-to-brain route, aiming to improve the biological attributes of anti-TRAIL-based therapy for AD treatment.
Collapse
Affiliation(s)
- Teresa Musumeci
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (T.M.); (C.C.); (A.B.); (G.A.); (G.P.)
| | - Giulia Di Benedetto
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95123 Catania, Italy; (G.D.B.); (C.B.); (G.C.)
| | - Claudia Carbone
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (T.M.); (C.C.); (A.B.); (G.A.); (G.P.)
| | - Angela Bonaccorso
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (T.M.); (C.C.); (A.B.); (G.A.); (G.P.)
| | - Giovanni Amato
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (T.M.); (C.C.); (A.B.); (G.A.); (G.P.)
| | - Maria Josè Lo Faro
- Dipartimento di Fisica e Astronomia “Ettore Majorana”, Università di Catania, Via Santa Sofia 64, 95123 Catania, Italy;
- CNR-IMM UoS Catania, Istituto per La Microelettronica e Microsistemi, Via Santa Sofia 64, 95123 Catania, Italy
| | - Chiara Burgaletto
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95123 Catania, Italy; (G.D.B.); (C.B.); (G.C.)
| | - Giovanni Puglisi
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (T.M.); (C.C.); (A.B.); (G.A.); (G.P.)
| | - Renato Bernardini
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95123 Catania, Italy; (G.D.B.); (C.B.); (G.C.)
| | - Giuseppina Cantarella
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95123 Catania, Italy; (G.D.B.); (C.B.); (G.C.)
| |
Collapse
|