1
|
de Jesús Martín-Camacho U, Rodríguez-Barajas N, Alberto Sánchez-Burgos J, Pérez-Larios A. Weibull β value for the discernment of drug release mechanism of PLGA particles. Int J Pharm 2023; 640:123017. [PMID: 37149112 DOI: 10.1016/j.ijpharm.2023.123017] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/27/2023] [Accepted: 04/30/2023] [Indexed: 05/08/2023]
Abstract
Mathematical models are used to characterize and optimize drug release in drug delivery systems (DDS). One of the most widely used DDS is the poly(lactic-co-glycolic acid) (PLGA)-based polymeric matrix owing to its biodegradability, biocompatibility, and easy manipulation of its properties through the manipulation of synthesis processes. Over the years, the Korsmeyer-Peppas model has been the most widely used model for characterizing the release profiles of PLGA DDS. However, owing to the limitations of the Korsmeyer-Peppas model, the Weibull model has emerged as an alternative for the characterization of the release profiles of PLGA polymeric matrices. The purpose of this study was to establish a correlation between the n and β parameters of the Korsmeyer-Peppas and Weibull models and to use the Weibull model to discern the drug release mechanism. A total of 451 datasets describing the overtime drug release of PLGA-based formulations from 173 scientific articles were fitted to both models. The Korsmeyer-Peppas model had a mean Akaike Information Criteria (AIC) value of 54.52 and an n value of 0.42, while the Weibull model had a mean AIC of 51.99 and a β value of 0.55, and by using reduced major axis regression values, a high correlation was found between the n and β values. These results demonstrate the ability of the Weibull model to characterize the release profiles of PLGA-based matrices and the usefulness of the β parameter for determining the drug release mechanism.
Collapse
Affiliation(s)
- Ubaldo de Jesús Martín-Camacho
- Laboratorio de Investigación en Materiales, Agua y Energía, Departamento de Ingeniería, Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, Jal., México, 47600
| | - Noé Rodríguez-Barajas
- Laboratorio de Investigación en Materiales, Agua y Energía, Departamento de Ingeniería, Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, Jal., México, 47600
| | | | - Alejandro Pérez-Larios
- Laboratorio de Investigación en Materiales, Agua y Energía, Departamento de Ingeniería, Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, Jal., México, 47600.
| |
Collapse
|
2
|
Khanom J, I Rezk A, Park CH, Kim CS. Near-Infrared Responsive Synergistic Chemo-Phototherapy from Surface-Functionalized Poly(ε-caprolactone)-Poly(d,l-lactic- co-glycolic acid) Composite Nanofibers for Postsurgical Cancer Treatment. Biomacromolecules 2022; 23:3582-3592. [PMID: 35949062 DOI: 10.1021/acs.biomac.2c00351] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The combination of hyperthermia and chemotherapy has attracted significant attention in local cancer treatment following surgical resection. Pyrrole is a potent photothermal agent that can induce a temperature rise at different concentrations in the surrounding medium by absorbing near-infrared radiation (NIR). In this study, poly(ε-caprolactone) (PCL) and poly (d,l-lactic-co-glycolic acid) (PLGA) were used to make nanofibers using the electrospinning process. Then, pyrrole in different concentrations of (0.2, 0.4, and 0.6) M was attached to the surface of PCL-PLGA fiber mats by in situ polymerization, which was confirmed by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), Fourier transform infrared spectroscopy (FT-IR), and X-ray diffraction (XRD) analysis. A concentration-dependent local temperature rise was observed using a FLIR camera under near-infrared (NIR) laser irradiation. For the hyperthermia effect, pyrrole concentration (0.06 M) was used for in vitro drug release studies and cell viability assays because under NIR irradiation (2 W/cm2, 3 min), it increased the local temperature to around 45 °C. In vitro drug release studies confirmed that NIR irradiation increased the diffusion rate of doxorubicin (DOX) by increasing the environmental temperature above the glass transition temperature of PLGA. In vitro cytotoxicity experiments further confirmed that PCL-PLGA-DOX/PPy fiber mats showed an enhanced inhibitory effect against CT26 and MCF7 cells by the combination of hyperthermia and chemotherapy.
Collapse
Affiliation(s)
- Jakia Khanom
- Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, Republic of Korea.,Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, Republic of Korea
| | - Abdelrahman I Rezk
- Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, Republic of Korea.,Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, Republic of Korea
| | - Chan Hee Park
- Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, Republic of Korea.,Mechanical Design Engineering, Jeonbuk National University, Jeonju 561-756, Republic of Korea
| | - Cheol Sang Kim
- Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, Republic of Korea.,Mechanical Design Engineering, Jeonbuk National University, Jeonju 561-756, Republic of Korea
| |
Collapse
|
3
|
An Insight into Anticancer Effect of Propolis and Its Constituents: A Review of Molecular Mechanisms. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5901191. [PMID: 35754701 PMCID: PMC9232326 DOI: 10.1155/2022/5901191] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 05/30/2022] [Indexed: 12/29/2022]
Abstract
Propolis is a natural compound collected by honeybees from different parts of plants. Honeybees produce a sticky component besides honey by mixing the tree resin and other botanical sources with saliva called propolis or bee glue. Propolis was traditionally used as a wound healing substance, cosmetic, medicine, and many other conditions. Till now, there is no definite curable treatment for most cancers and chemotherapeutic drugs and drugs used for targeted therapies have serious side effects. According to a recent research, natural products are becoming increasingly essential in cancer prevention. Natural products are a great source of potential therapeutic agents, especially in the treatment of cancer. Previous studies have reported that the presence of caffeic acid phenethyl ester (CAPE), artepillin C, and chrysin is responsible for the anticancer potential of propolis. Most of the previous studies suggested that propolis and its active compounds inhibit cancer progression by targeting multiple signaling pathways including phosphoinositide 3-kinases (PI3K)/Akt and mitogen-activated protein kinase (MAPK) signaling molecules, and induce cell cycle arrest. Induction of apoptosis by propolis is mediated through extrinsic and intrinsic apoptotic pathways. The aim of this review is to highlight and summarize the molecular targets and anticancer potential of propolis and its active compounds on cell survival, proliferation, metastasis, and apoptosis in cancer cells.
Collapse
|