1
|
Ulger O, Eş I, Proctor CM, Algin O. Stroke studies in large animals: Prospects of mitochondrial transplantation and enhancing efficiency using hydrogels and nanoparticle-assisted delivery. Ageing Res Rev 2024; 100:102469. [PMID: 39191353 DOI: 10.1016/j.arr.2024.102469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/08/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024]
Abstract
One of the most frequent reasons for mortality and disability today is acute ischemic stroke, which occurs by an abrupt disruption of cerebral circulation. The intricate damage mechanism involves several factors, such as inflammatory response, disturbance of ion balance, loss of energy production, excessive reactive oxygen species and glutamate release, and finally, neuronal death. Stroke research is now carried out using several experimental models and potential therapeutics. Furthermore, studies are being conducted to address the shortcomings of clinical care. A great deal of research is being done on novel pharmacological drugs, mitochondria targeting compounds, and different approaches including brain cooling and new technologies. Still, there are many unanswered questions about disease modeling and treatment strategies. Before these new approaches may be used in therapeutic settings, they must first be tested on large animals, as most of them have been done on rodents. However, there are several limitations to large animal stroke models used for research. In this review, the damage mechanisms in acute ischemic stroke and experimental acute ischemic stroke models are addressed. The current treatment approaches and promising experimental methods such as mitochondrial transplantation, hydrogel-based interventions, and strategies like mitochondria encapsulation and chemical modification, are also examined in this work.
Collapse
Affiliation(s)
- Oner Ulger
- Department of Mitochondria and Cellular Research, Gulhane Health Sciences Institute, University of Health Sciences, Ankara 06010, Turkiye; Gulhane Training and Research Hospital, University of Health Sciences, Ankara 06010, Turkiye.
| | - Ismail Eş
- Department of Engineering Science, Institute of Biomedical Engineering (IBME), University of Oxford, Oxford OX3 7DQ, UK
| | - Christopher M Proctor
- Department of Engineering Science, Institute of Biomedical Engineering (IBME), University of Oxford, Oxford OX3 7DQ, UK
| | - Oktay Algin
- Interventional MR Clinical R&D Institute, Ankara University, Ankara 06100, Turkiye; Department of Radiology, Medical Faculty, Ankara University, Ankara 06100, Turkiye; National MR Research Center (UMRAM), Bilkent University, Ankara 06800, Turkiye
| |
Collapse
|
2
|
Isazadeh H, Oruji F, Shabani S, Behroozi J, Nasiri H, Isazadeh A, Akbari M. Advances in siRNA delivery approaches in cancer therapy: challenges and opportunities. Mol Biol Rep 2023; 50:9529-9543. [PMID: 37741808 DOI: 10.1007/s11033-023-08749-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/08/2023] [Indexed: 09/25/2023]
Abstract
Advancements in the clinical applications of small interfering RNA (siRNA) in cancer therapy have opened up new possibilities for precision medicine. siRNAs, as powerful genetic tools, have shown potential in targeting and suppressing the expression of specific genes associated with cancer progression. Their effectiveness has been further enhanced by incorporating them into nanoparticles, which protect siRNAs from degradation and enable targeted delivery. However, despite these promising developments, several challenges persist in the clinical translation of siRNA-based cancer therapy. This comprehensive review explores the progress and challenges associated with the clinical applications of siRNA in cancer therapy. This review highlights the use of siRNA-loaded nanoparticles as an effective delivery system for optimizing siRNA efficacy in various types of carcinomas and the potential of siRNA-based therapy as a genetic approach to overcome limitations associated with conventional chemotherapeutic agents, including severe drug toxicities and organ damage. Moreover, it emphasizes on the key challenges, including off-target effects, enzymatic degradation of siRNAs in serum, low tumor localization, stability issues, and rapid clearance from circulation that need to be addressed for successful clinical development of siRNA-based cancer therapy. Despite these challenges, the review identifies significant avenues for advancing siRNA technology from the laboratory to clinical settings. The ongoing progress in siRNA-loaded nanoparticles for cancer treatment demonstrates potential antitumor activities and safety profiles. By understanding the current state of siRNA-based therapy and addressing the existing challenges, we aim to pave the way for translating siRNA technology into effective oncologic clinics as an improved treatment options for cancer patients.
Collapse
Affiliation(s)
- Houman Isazadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Daneshghah Ave, Tabriz, Iran
| | - Farshid Oruji
- College of Medicine, Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Shima Shabani
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Javad Behroozi
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hadi Nasiri
- Immunology Research Center, Tabriz University of Medical Sciences, Daneshghah Ave, Tabriz, Iran
| | - Alireza Isazadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Daneshghah Ave, Tabriz, Iran
| | - Morteza Akbari
- Immunology Research Center, Tabriz University of Medical Sciences, Daneshghah Ave, Tabriz, Iran.
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
3
|
Erdem Ö, Eş I, Saylan Y, Atabay M, Gungen MA, Ölmez K, Denizli A, Inci F. In situ synthesis and dynamic simulation of molecularly imprinted polymeric nanoparticles on a micro-reactor system. Nat Commun 2023; 14:4840. [PMID: 37563147 PMCID: PMC10415298 DOI: 10.1038/s41467-023-40413-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 07/26/2023] [Indexed: 08/12/2023] Open
Abstract
Current practices in synthesizing molecularly imprinted polymers face challenges-lengthy process, low-productivity, the need for expensive and sophisticated equipment, and they cannot be controlled in situ synthesis. Herein, we present a micro-reactor for in situ and continuously synthesizing trillions of molecularly imprinted polymeric nanoparticles that contain molecular fingerprints of bovine serum albumin in a short period of time (5-30 min). Initially, we performed COMSOL simulation to analyze mixing efficiency with altering flow rates, and experimentally validated the platform for synthesizing nanoparticles with sizes ranging from 52-106 nm. Molecular interactions between monomers and protein were also examined by molecular docking and dynamics simulations. Afterwards, we benchmarked the micro-reactor parameters through dispersity and concentration of molecularly imprinted polymers using principal component analysis. Sensing assets of molecularly imprinted polymers were examined on a metamaterial sensor, resulting in 81% of precision with high selectivity (4.5 times), and three cycles of consecutive use. Overall, our micro-reactor stood out for its high productivity (48-288 times improvement in assay-time and 2 times improvement in reagent volume), enabling to produce 1.4-1.5 times more MIPs at one-single step, and continuous production compared to conventional strategy.
Collapse
Affiliation(s)
- Özgecan Erdem
- UNAM-National Nanotechnology Research Center, Bilkent University, 06800, Ankara, Turkey
| | - Ismail Eş
- UNAM-National Nanotechnology Research Center, Bilkent University, 06800, Ankara, Turkey
| | - Yeşeren Saylan
- Department of Chemistry, Hacettepe University, 06800, Ankara, Turkey
| | - Maryam Atabay
- UNAM-National Nanotechnology Research Center, Bilkent University, 06800, Ankara, Turkey
- Department of Chemistry, Hacettepe University, 06800, Ankara, Turkey
| | - Murat Alp Gungen
- UNAM-National Nanotechnology Research Center, Bilkent University, 06800, Ankara, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, 06800, Ankara, Turkey
| | - Kadriye Ölmez
- UNAM-National Nanotechnology Research Center, Bilkent University, 06800, Ankara, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, 06800, Ankara, Turkey
| | - Adil Denizli
- Department of Chemistry, Hacettepe University, 06800, Ankara, Turkey
| | - Fatih Inci
- UNAM-National Nanotechnology Research Center, Bilkent University, 06800, Ankara, Turkey.
- Institute of Materials Science and Nanotechnology, Bilkent University, 06800, Ankara, Turkey.
| |
Collapse
|
4
|
Liu CH, Lin CH, Chen YJ, Wu WC, Wang CC. Multifunctional magnetic nanocarriers for delivery of siRNA and shRNA plasmid to mammalian cells: Characterization, adsorption and release behaviors. Colloids Surf B Biointerfaces 2022; 219:112861. [PMID: 36162177 DOI: 10.1016/j.colsurfb.2022.112861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/03/2022] [Accepted: 09/18/2022] [Indexed: 11/19/2022]
Abstract
Nucleic acids are promising candidates for treating various diseases. Nucleic acid is negatively charged and hydrophilic; therefore, it is not efficiently taken up by cells. Successful gene therapy requires the development of carriers for efficient delivery of gene-expressing DNA plasmid and small interfering RNA (siRNA) duplex. In this study, we developed MNP-CA-PEI, a citric acid (CA)-modified magnetic nanoparticle (MNP) cross-linked with polyethyleneimine (PEI), using carbonyldiimidazole as the crosslinker. The physical properties of MNP-CA-PEI (particle size, morphologies, surface coating, surface potentials, magnetic hystereses, superparamagnetic behaviors, and infrared spectra) were systematically characterized by transmission electron microscopy imaging, dynamic light scattering, thermogravimetric analysis, superconducting quantum interference device, and Fourier transform infrared spectroscopy. The adsorption isotherm and kinetics were determined by the Langmuir model, the Freundlich model, a pseudo-first-order equation, and a pseudo-second-order equation. MNP-CA-PEI could form polyelectrolyte complexes with negatively charged nucleic acids, enabling the efficient delivery of nucleic acids into cells. Using MNP-CA-PEI nanoparticles, we magnetically triggered the intracellular delivery of green fluorescence protein (GFP)-expressing DNA plasmid, plasmid-expressing short hairpin RNA (shRNA) against GFP, or siRNA targeting GFP into different cell lines. Nucleic acid/MNP-CA-PEI displayed the enhanced cellular uptake of GFP-expressing DNA plasmid, and it improved the silencing efficiency of shRNA and siRNA, determined by fluorescence imaging. Gene knockdowns mediated by shRNA and siRNA were also confirmed by a quantitative real-time polymerase chain reaction. MNP-CA-PEI delivered nucleic acids into cytosol through caveolae-mediated endocytosis. This study introduces a new MNP functionalization that can be used for the magnetically driven intracellular delivery of nucleic acids.
Collapse
Affiliation(s)
- Chi-Hsien Liu
- Department of Chemical and Materials Engineering, Chang Gung University, 259, Wen-Hwa First Road, Kwei-Shan, Taoyuan 33302, Taiwan; Research Center for Chinese Herbal Medicine and Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, 261, Wen-Hwa First Road, Taoyuan 33302, Taiwan; Department of Chemical Engineering, Ming Chi University of Technology, 84, Gung-Juan Road, New Taipei City 24301, Taiwan; Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou, 5, Fu-Hsing Street, Taoyuan 33305, Taiwan.
| | - Cheng-Han Lin
- Department of Chemical and Materials Engineering, Chang Gung University, 259, Wen-Hwa First Road, Kwei-Shan, Taoyuan 33302, Taiwan
| | - Yi-Jun Chen
- Department of Chemical and Materials Engineering, Chang Gung University, 259, Wen-Hwa First Road, Kwei-Shan, Taoyuan 33302, Taiwan
| | - Wei-Chi Wu
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou, 5, Fu-Hsing Street, Taoyuan 33305, Taiwan; College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
| | - Chun-Chao Wang
- Institute of Molecular Medicine & Department of Medical Science, National Tsing Hua University, 101, Kuang-Fu Road, Hsinchu 30013, Taiwan.
| |
Collapse
|