1
|
He G, Tian L, Liu J, Fefer M, Hosseinidoust Z, Pelton RH. Low Molecular Weight Shuttle Molecules Enhance Polychloramide Antimicrobial Activity. Biomacromolecules 2024; 25:502-507. [PMID: 38081186 DOI: 10.1021/acs.biomac.3c01109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Investigated were the influences of succinimide (SI), 5,5-dimethylhydantoin (DMH), and 3-(hydroxymethyl)-5,5-dimethylhydantoin (HDMH) on the biocidal activity of chlorinated, water-soluble polyamide prepared by the reaction of isopropylamine with poly(styrene-alt-maleic anhydride). The resulting polymer was a negatively charged, water-soluble polymer bearing a carboxylic acid and an isopropylamide moiety on nearly every repeat unit. Subsequent treatment with NaOCl chlorinated the polymers to up to 4.4% Cl while inflicting some polymer chain scission. SI, DMH, or HDMH increased the biocidal activity of polychloramides toward planktonic Escherichia coli and Staphylococcus aureus. Independent solution studies confirmed that oxidative chlorine spontaneously transferred from aqueous polychloramides to small molecules. We concluded that SI, DMH, and HDMH acted as shuttles that extracted oxidative Cl from the polymer chloramides and transported oxidative Cl more efficiently to microbial surfaces. Succinimide was the most effective shuttle. These results warn that some low molecular weight soluble molecules in antimicrobial testing solutions may exaggerate the effectiveness of the polymer or immobilized antimicrobial agents.
Collapse
Affiliation(s)
- Gaoyin He
- Department of Chemical Engineering, McMaster University, Hamilton, ON, Canada L8S 4L7
| | - Lei Tian
- Department of Chemical Engineering, McMaster University, Hamilton, ON, Canada L8S 4L7
| | - Jun Liu
- Suncor AgroScience, 2489 North Sheridan Way, Mississauga, ON, Canada L5K 1A8
| | - Michael Fefer
- Suncor AgroScience, 2489 North Sheridan Way, Mississauga, ON, Canada L5K 1A8
| | - Zeinab Hosseinidoust
- Department of Chemical Engineering, McMaster University, Hamilton, ON, Canada L8S 4L7
| | - Robert H Pelton
- Department of Chemical Engineering, McMaster University, Hamilton, ON, Canada L8S 4L7
| |
Collapse
|
2
|
Lu Y, Wang D, Zhang Y, Hu Y, Lu J, Zeng Z, Zeng D. Preparation and Antimicrobial Activity of a Film-Forming Polyhexamethylene Biguanide Teat Disinfectant. Int J Mol Sci 2023; 24:17444. [PMID: 38139273 PMCID: PMC10743736 DOI: 10.3390/ijms242417444] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/04/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Bovine mastitis caused by infectious pathogens can lead to a decline in production performance and an increase in elimination rate, resulting in huge losses to the dairy industry. This study aims to prepare a novel dairy cow teat disinfectant with polyhexamethylene biguanide (PHMB) as the main bactericidal component and to evaluate its bactericidal activity in vitro and its disinfection effect in dairy cow teats. PHMB disinfectant with a concentration of 3 g/L was prepared with PVA-1788, propylene glycol and glycerol as excipients. When the dilution ratio is 1:4800 and the action time is 5 min, the PHMB teat disinfectant can reduce the four types of bacteria (S. agalactiae ATCC 12386, S. dysgalactiae ATCC 35666, S. aureus ATCC 6538, and E. coli ATCC 8099) by 99.99%. PHMB teat disinfectant applied on the skin of rabbits with four bacteria types achieved an average log10 reduction greater than 4. After 30 s of PHMB teat disinfectant dipping, the bacteria of cow teats were counted prior to disinfection. The mean log10 reduction in bacteria on the skin surface of 12 cows ranged from 0.99 to 3.52 after applying the PHMB teat disinfectant for 10 min. After 12 h, the PHMB teat disinfectant achieved an average log10 reduction in bacteria from 0.27 to 0.68 (compared with that prior to disinfection). These results suggested that PHMB teat disinfection has the potential to prevent and treat mastitis-causing bacteria in dairy herds.
Collapse
Affiliation(s)
- Yixing Lu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (D.W.); (Y.Z.); (Y.H.); (J.L.)
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, Guangzhou 510642, China
| | - Di Wang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (D.W.); (Y.Z.); (Y.H.); (J.L.)
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, Guangzhou 510642, China
| | - Yongxiang Zhang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (D.W.); (Y.Z.); (Y.H.); (J.L.)
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, Guangzhou 510642, China
| | - Yueying Hu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (D.W.); (Y.Z.); (Y.H.); (J.L.)
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, Guangzhou 510642, China
| | - Jiaxuan Lu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (D.W.); (Y.Z.); (Y.H.); (J.L.)
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, Guangzhou 510642, China
| | - Zhenling Zeng
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (D.W.); (Y.Z.); (Y.H.); (J.L.)
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, Guangzhou 510642, China
| | - Dongping Zeng
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (D.W.); (Y.Z.); (Y.H.); (J.L.)
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, Guangzhou 510642, China
| |
Collapse
|
3
|
He G, Fatona A, Tian L, Song C, Liu J, Fefer M, Hosseinidoust Z, Pelton RH. Impacts of non-microbial soils on polychloramide disinfectants. Colloids Surf B Biointerfaces 2023; 229:113464. [PMID: 37478543 DOI: 10.1016/j.colsurfb.2023.113464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/30/2023] [Accepted: 07/16/2023] [Indexed: 07/23/2023]
Abstract
The presence of some nonmicrobial chemicals and surfaces, herein called "soils", are known to degrade the performance of biocides, and biocidal assays often include mixtures of materials to mimic the effects of soils. We hypothesized that water-soluble anionic polychloramide biocides were less sensitive to soil interference than cationic polymeric biocides. The relationships between soil composition and antimicrobial polymer biocidal activity were compared for an anionic polychloramide, a cationic polychloramide, and a cationic poly(quaternary ammonium) biocide. The nanoscale soil models individually investigated were polyacrylic acid (PAA), cellulose nanocrystals (CNCs), and bovine serum albumin. The low molecular weight model soils were ammonium chloride, glycine, and succinimide. Three types of soil impacts were identified: 1) sequestration, whereby the soil physically inhibited transport of the biocide to microbes; 2) extraction, whereby the soil reduced or extracted oxidative chlorine, decreasing or eliminating the oxidative chlorine strength; and 3) extraction whereby the biocidal activity increases in the presence of a low molecular weight chemical that carries oxidative Cl from the polymer to the microbes. PAA and CNCs inhibit cationic biocides by sequestration but have little impact on anionic polychloramide. Glycine and BSA extract oxidative chlorine, lowering the biocidal activity of the anionic and cationic polychloramides while not impacting the poly(quaternary ammonium) biocide. Finally, the presence of succinimide increased bacteria deactivation of both anionic and cationic polychloramides. We propose that succinimide extracts oxidative chlorine from the polychloramides and transports it to the bacteria.
Collapse
Affiliation(s)
- Gaoyin He
- Department of Chemical Engineering, McMaster University, Hamilton, Ontario L8S 4L7, Canada
| | - Ayodele Fatona
- Department of Chemical Engineering, McMaster University, Hamilton, Ontario L8S 4L7, Canada
| | - Lei Tian
- Department of Chemical Engineering, McMaster University, Hamilton, Ontario L8S 4L7, Canada
| | - Chaochen Song
- Department of Chemical Engineering, McMaster University, Hamilton, Ontario L8S 4L7, Canada
| | - Jun Liu
- Suncor AgroScience, 2489 North Sheridan Way, Mississauga, Ontario L5K 1A8, Canada
| | - Michael Fefer
- Suncor AgroScience, 2489 North Sheridan Way, Mississauga, Ontario L5K 1A8, Canada
| | - Zeinab Hosseinidoust
- Department of Chemical Engineering, McMaster University, Hamilton, Ontario L8S 4L7, Canada
| | - Robert H Pelton
- Department of Chemical Engineering, McMaster University, Hamilton, Ontario L8S 4L7, Canada.
| |
Collapse
|
4
|
Pelton RH, He G, Tian L, Song C, Hosseinidoust Z. Modeling the Impact of Polychloramide Solution Properties on Bacterial Disinfection Kinetics. Biomacromolecules 2022; 23:3919-3927. [PMID: 36001031 DOI: 10.1021/acs.biomac.2c00736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Anionic water-soluble polychloramide biocides are of interest because, compared to conventional cationic antimicrobial polymers, anionic biocides are less likely to be sequestered or deactivated by contact with non-microbial soil. Although electrostatics can prevent anionic polymers from adsorbing on microbes, water-soluble polychloramides appear to transfer oxidative chlorine during transient contacts between polymer chains and microbe surfaces. The Chick-Watson model of disinfection kinetics has been modified to account for the contributions of polychloramide molecular weight (MW) and the polychloramide configuration in solution estimated from the overlap concentration, C*, below which dilute polymer chains exist as discrete objects in solution. The key assumption in the modeling was that the transfer rate of oxidative chlorine from polychloramide chains to microbe surfaces impacts the disinfection kinetics. Because both C* and MW are measurable, the polymer-modified Chick-Watson (PCW) model has one less unknown parameter than the two-parameter Chick-Watson equation. The PCW model predicts that lower MW polymers are more effective biocides compared with high MW counterparts. Additionally, polymers with more compressed configurations in solution are more effective biocides. Experimental evidence supports these conclusions. Based on the estimated time scale of bacteria/polymer collisions compared with disinfection kinetics, arguments are made that bacteria surfaces must be contracted many times by polychloramide chains to achieve sufficient Cl transfer to deactivate bacteria.
Collapse
Affiliation(s)
- Robert H Pelton
- Department of Chemical Engineering, McMaster University, Hamilton, OntarioL8S 4L7, Canada
| | - Gaoyin He
- Department of Chemical Engineering, McMaster University, Hamilton, OntarioL8S 4L7, Canada
| | - Lei Tian
- Department of Chemical Engineering, McMaster University, Hamilton, OntarioL8S 4L7, Canada
| | - Chaochen Song
- Department of Chemical Engineering, McMaster University, Hamilton, OntarioL8S 4L7, Canada
| | - Zeinab Hosseinidoust
- Department of Chemical Engineering, McMaster University, Hamilton, OntarioL8S 4L7, Canada
| |
Collapse
|