1
|
Xing S, Zhang H, Liu L, Wang D, Ge N, Liu X. Selective Tumor Inhibition Effect of Drug-Free Layered Double Hydroxide-Based Films via Responding to Acidic Microenvironment. ACS Biomater Sci Eng 2024; 10:4927-4937. [PMID: 38967561 DOI: 10.1021/acsbiomaterials.4c00780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Nickel-titanium alloy stents are widely used in the interventional treatment of various malignant tumors, and it is important to develop nickel-titanium alloy stents with selective cancer-inhibiting and antibacterial functions to avoid malignant obstruction caused by tumor invasion and bacterial colonization. In this work, an acid-responsive layered double hydroxide (LDH) film was constructed on the surface of a nickel-titanium alloy by hydrothermal treatment. The release of nickel ions from the film in the acidic tumor microenvironment induces an intracellular oxidative stress response that leads to cell death. In addition, the specific surface area of LDH nanosheets could be further regulated by heat treatment to modulate the release of nickel ions in the acidic microenvironment, allowing the antitumor effect to be further enhanced. This acid-responsive LDH film also shows a good antibacterial effect against S. aureus and E. coli. Besides, the LDH film prepared without the introduction of additional elements maintains low toxicity to normal cells in a normal physiological environment. This work offers some guidance for the design of a practical nickel-titanium alloy stent for the interventional treatment of tumors.
Collapse
Affiliation(s)
- Shun Xing
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haifeng Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lidan Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Donghui Wang
- School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Naijian Ge
- Intervention Center, Eastern Hepatobiliary Surgery Hospital, The Third Affiliated Hospital of Naval Medical University, Shanghai 200438, China
| | - Xuanyong Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Kaur H, Kalia A, Manchanda P, Singh A. Nano-delivery platforms for bacterial gene transformation: suitability and challenges. Int Microbiol 2024:10.1007/s10123-024-00543-5. [PMID: 38902555 DOI: 10.1007/s10123-024-00543-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 05/19/2024] [Accepted: 06/02/2024] [Indexed: 06/22/2024]
Abstract
Nano-scale particles (NPs) have gained increased interest as non-viral vectors for nucleic acid delivery due to their ability to penetrate through unabraded cell membranes. The previous studies performed have evaluated the nanomaterials for their microbial transformation proficiency but have not compared the relative efficacy. The present study aims to identify the most proficient nano-delivery vehicle among the chemically synthesized/functionalized non-metal oxide, metal/metal oxide, and carbon-based (carbon nanotube (CNT), graphene oxide (GO)) nanomaterial(s) (NMs) for the transformation of two gram-negative bacteria, i.e., Escherichia coli and Agrobacterium tumefaciens. The microscopy and spectroscopy studies helped to identify the interaction, adhesion patterns, transformation efficiencies, better delivery, and expression of the target gfp gene by use of NMs. Loading of pgfp on all NMs imparted protection to DNAse I attack except ZnO NPs with maximum by chitosan, layered double hydroxide (LDH), and GO NM-plasmid DNA conjugates. The CNTs and GO significantly enhanced the extra- and intra-cellular protein content, respectively, in both bacteria. However, GO and CNT significantly decreased the cell viability in a time-dependent manner while AuNPs exhibited negligible cell toxicity. Therefore, this study identified the comparative efficiency of metal/metal oxide, non-metal oxide, and carbon nanomaterials with AuNPs as the most biosafe while LDH and chitosan NPs being the most proficient alternative tools for the genetic transformation of gram-negative bacteria by simple incubation method.
Collapse
Affiliation(s)
- Harkamal Kaur
- Department of Microbiology, College of Basic Sciences and Humanities, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Anu Kalia
- Electron Microscopy and Nanoscience Laboratory, Department of Soil Science, College of Agriculture, Punjab Agricultural University, Ludhiana, Punjab, 141004, India.
| | - Pooja Manchanda
- School of Agricultural Biotechnology, College of Agriculture, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Alla Singh
- ICAR-Indian Institute of Maize Research, PAU Campus, PAU, Ludhiana, Punjab, 141004, India
| |
Collapse
|
3
|
Li L, Soyhan I, Warszawik E, van Rijn P. Layered Double Hydroxides: Recent Progress and Promising Perspectives Toward Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306035. [PMID: 38501901 PMCID: PMC11132086 DOI: 10.1002/advs.202306035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Indexed: 03/20/2024]
Abstract
Layered double hydroxides (LDHs) have been widely studied for biomedical applications due to their excellent properties, such as good biocompatibility, degradability, interlayer ion exchangeability, high loading capacity, pH-responsive release, and large specific surface area. Furthermore, the flexibility in the structural composition and ease of surface modification of LDHs makes it possible to develop specifically functionalized LDHs to meet the needs of different applications. In this review, the recent advances of LDHs for biomedical applications, which include LDH-based drug delivery systems, LDHs for cancer diagnosis and therapy, tissue engineering, coatings, functional membranes, and biosensors, are comprehensively discussed. From these various biomedical research fields, it can be seen that there is great potential and possibility for the use of LDHs in biomedical applications. However, at the same time, it must be recognized that the actual clinical translation of LDHs is still very limited. Therefore, the current limitations of related research on LDHs are discussed by combining limited examples of actual clinical translation with requirements for clinical translation of biomaterials. Finally, an outlook on future research related to LDHs is provided.
Collapse
Affiliation(s)
- Lei Li
- Department of Biomedical EngineeringUniversity of GroningenUniversity Medical Center GroningenA. Deusinglaan 1Groningen, AV9713The Netherlands
- W. J. Kolff Institute for Biomedical Engineering and Materials ScienceUniversity of GroningenUniversity Medical Center GroningenA. Deusinglaan 1Groningen, AV9713The Netherlands
| | - Irem Soyhan
- Department of Biomedical EngineeringUniversity of GroningenUniversity Medical Center GroningenA. Deusinglaan 1Groningen, AV9713The Netherlands
- W. J. Kolff Institute for Biomedical Engineering and Materials ScienceUniversity of GroningenUniversity Medical Center GroningenA. Deusinglaan 1Groningen, AV9713The Netherlands
| | - Eliza Warszawik
- Department of Biomedical EngineeringUniversity of GroningenUniversity Medical Center GroningenA. Deusinglaan 1Groningen, AV9713The Netherlands
- W. J. Kolff Institute for Biomedical Engineering and Materials ScienceUniversity of GroningenUniversity Medical Center GroningenA. Deusinglaan 1Groningen, AV9713The Netherlands
| | - Patrick van Rijn
- Department of Biomedical EngineeringUniversity of GroningenUniversity Medical Center GroningenA. Deusinglaan 1Groningen, AV9713The Netherlands
- W. J. Kolff Institute for Biomedical Engineering and Materials ScienceUniversity of GroningenUniversity Medical Center GroningenA. Deusinglaan 1Groningen, AV9713The Netherlands
| |
Collapse
|
4
|
Awassa J, Soulé S, Cornu D, Ruby C, El-Kirat-Chatel S. Understanding the nanoscale adhesion forces between the fungal pathogen Candida albicans and antimicrobial zinc-based layered double hydroxides using single-cell and single-particle force spectroscopy. NANOSCALE 2024; 16:5383-5394. [PMID: 38375749 DOI: 10.1039/d3nr06027f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Antifungal resistance has become a very serious concern, and Candida albicans is considered one of the most opportunistic fungal pathogens responsible for several human infections. In this context, the use of new antifungal agents such as zinc-based layered double hydroxides to fight such fungal pathogens is considered one possible means to help limit the problem of antifungal resistance. In this study, we show that ZnAl LDH nanoparticles exhibit remarkable antifungal properties against C. albicans and cause serious cell wall damage, as revealed by growth tests and atomic force microscopy (AFM) imaging. To further link the antifungal activity of ZnAl LDHs to their adhesive behaviors toward C. albicans cells, AFM-based single-cell spectroscopy and single-particle force spectroscopy were used to probe the nanoscale adhesive interactions. The force spectroscopy analysis revealed that antimicrobial ZnAl LDHs exhibit specific surface interactions with C. albicans cells, demonstrating remarkable force magnitudes and adhesion frequencies in comparison with non-antifungal negative controls, e.g., Al-coated substrates and MgAl LDHs, which showed limited interactions with C. albicans cells. Force signatures suggest that such adhesive interactions may be attributed to the presence of agglutinin-like sequence (Als) adhesive proteins at the cell wall surface of C. albicans cells. Our findings propose the presence of a strong correlation between the antifungal effect provided by ZnAl LDHs and their nanoscale adhesive interactions with C. albicans cells at both the single-cell and single-particle levels. Therefore, ZnAl LDHs could interact with C. albicans fungal pathogens by specific adhesive interactions through which they adhere to fungal cells, leading to their damage and subsequent growth inhibition.
Collapse
Affiliation(s)
- Jazia Awassa
- Université de Lorraine, CNRS, LCPME, F-54000 Nancy, France.
| | - Samantha Soulé
- Université de Lorraine, CNRS, LCPME, F-54000 Nancy, France.
| | - Damien Cornu
- Université de Lorraine, CNRS, LCPME, F-54000 Nancy, France.
| | - Christian Ruby
- Université de Lorraine, CNRS, LCPME, F-54000 Nancy, France.
| | - Sofiane El-Kirat-Chatel
- Université de Lorraine, CNRS, LCPME, F-54000 Nancy, France.
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600 Pessac, France
| |
Collapse
|
5
|
Mahmoud R, Kotb NM, GadelHak Y, El-Ela FIA, Shehata AZ, Othman SI, Allam AA, Rudayni HA, Zaher A. Investigation of ternary Zn-Co-Fe layered double hydroxide as a multifunctional 2D layered adsorbent for moxifloxacin and antifungal disinfection. Sci Rep 2024; 14:806. [PMID: 38191628 PMCID: PMC10774404 DOI: 10.1038/s41598-023-48382-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/26/2023] [Indexed: 01/10/2024] Open
Abstract
Layered double hydroxides have recently gained wide interest as promising multifunctional nanomaterials. In this work, a multifunctional ternary Zn-Co-Fe LDH was prepared and characterized using XRD, FTIR, BET, TEM, SEM, and EDX. This LDH showed a typical XRD pattern with a crystallite size of 3.52 nm and a BET surface area of 155.9 m2/g. This LDH was investigated, for the first time, as an adsorbent for moxifloxacin, a common fluoroquinolones antibiotic, showing a maximum removal efficiency and equilibrium time of 217.81 mg/g and 60 min, respectively. Its antifungal activity, for the first time, was investigated against Penicillium notatum, Aspergillus flavus, Aspergillus fumigatus, Aspergillus niger, and Mucor fungi at various concentrations (1000-1.95 µg/mL). This LDH was found to be effective against a variety of fungal strains, particularly Penicillium and Mucor species and showed zones of inhibition of 19.3 and 21.6 mm for Penicillium and Mucor, respectively, with an inhibition of 85% for Penicillium species and 68.3% for Mucormycosis. The highest antifungal efficacy results were obtained at very low MIC concentrations (33.3 and 62 µg/ml) against Penicillium and Mucor, respectively. The results of this study suggest a promising multifunctional potential of this LDH for water and wastewater treatment and disinfection applications.
Collapse
Affiliation(s)
- Rehab Mahmoud
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62511, Egypt.
| | - Nada M Kotb
- Hydrogeology and Environment Department, Faculty of Earth Sciences, Beni-Suef University, Beni-Suef, Egypt
| | - Yasser GadelHak
- Department of Materials Science and Nanotechnology, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Fatma I Abo El-Ela
- Department of Pharmacology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Ayman Z Shehata
- Department of Food Safety and Technology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Sarah I Othman
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, P.O. BOX 84428, 11671, Riyadh, Saudi Arabia
| | - Ahmed A Allam
- Department of Biology, College of Science, Imam Muhammad Ibn Saud Islamic University, 11623, Riyadh, Saudi Arabia
- Department of Zoology, Faculty of Science, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Hassan Ahmed Rudayni
- Department of Biology, College of Science, Imam Muhammad Ibn Saud Islamic University, 11623, Riyadh, Saudi Arabia
| | - Amal Zaher
- Environmental Science and Industrial Development Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
6
|
Ouyang B, Wei D, Wu B, Yan L, Gang H, Cao Y, Chen P, Zhang T, Wang H. In the View of Electrons Transfer and Energy Conversion: The Antimicrobial Activity and Cytotoxicity of Metal-Based Nanomaterials and Their Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2303153. [PMID: 37721195 DOI: 10.1002/smll.202303153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/28/2023] [Indexed: 09/19/2023]
Abstract
The global pandemic and excessive use of antibiotics have raised concerns about environmental health, and efforts are being made to develop alternative bactericidal agents for disinfection. Metal-based nanomaterials and their derivatives have emerged as promising candidates for antibacterial agents due to their broad-spectrum antibacterial activity, environmental friendliness, and excellent biocompatibility. However, the reported antibacterial mechanisms of these materials are complex and lack a comprehensive understanding from a coherent perspective. To address this issue, a new perspective is proposed in this review to demonstrate the toxic mechanisms and antibacterial activities of metal-based nanomaterials in terms of energy conversion and electron transfer. First, the antimicrobial mechanisms of different metal-based nanomaterials are discussed, and advanced research progresses are summarized. Then, the biological intelligence applications of these materials, such as biomedical implants, stimuli-responsive electronic devices, and biological monitoring, are concluded based on trappable electrical signals from electron transfer. Finally, current improvement strategies, future challenges, and possible resolutions are outlined to provide new insights into understanding the antimicrobial behaviors of metal-based materials and offer valuable inspiration and instructional suggestions for building future intelligent environmental health.
Collapse
Affiliation(s)
- Baixue Ouyang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
| | - Dun Wei
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
| | - Bichao Wu
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
| | - Lvji Yan
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
| | - Haiying Gang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
| | - Yiyun Cao
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
| | - Peng Chen
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
| | - Tingzheng Zhang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
| | - Haiying Wang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
- School of Metallurgy and Environment and Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Central South, University, Changsha, 410083, China
| |
Collapse
|
7
|
Li L, Liu Z, Jiang D, Song M, Wang Y. Bimetallic CoSn nanoparticles anchored on N-doped carbon as antibacterial oxygen reduction catalysts for microbial fuel cells. NANOSCALE 2023; 15:15739-15748. [PMID: 37740420 DOI: 10.1039/d3nr03504b] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Sluggish oxygen reduction reaction (ORR) kinetics and biofilm formation limit the power generation and stability of microbial fuel cells (MFCs). Herein, bimetallic CoSn nanoparticles anchored on ZIF-derived N-doped carbon (CoSn@NC) were designed and synthesized as bifunctional catalysts to accelerate the ORR and improve the antibacterial activity. Sn modulated the electronic structure of bimetallic CoSn by drawing electrons from Co. Electron redistribution of CoSn@NC optimized the O2 adsorption at Co sites for rapid ORR kinetics. The up-shifted d-band center of Co sites reduced the energy barrier of the rate-determining step for *O formation, resulting in efficient catalytic activity. Bimetallic CoSn nanoparticles were beneficial for the four-electron transfer process for more ˙OH species production. Sn2+ and ˙OH synergistically improved the antibacterial activity of CoSn@NC to inhibit the growth of the cathode biofilm and accelerate mass-charge transfer. CoSn@NC demonstrated superior oxygen reduction activity with a half-wave potential of 0.84 V and an onset potential of 0.90 V, respectively. The MFCs assembled with the CoSn@NC cathodic catalyst exhibited an excellent power density of 1380 mW m-2 and long-term stability for 105 h. This work provides a strategy for the design of antibacterial ORR catalysts for improved catalytic activity and long-term stability.
Collapse
Affiliation(s)
- Liang Li
- Research Center for Nano Photoelectrochemistry and Devices, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
- Yangtze River Delta Carbon Neutrality Strategy Development Institute, Southeast University, Nanjing 210096, China
| | - Zequan Liu
- School of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Demin Jiang
- Research Center for Nano Photoelectrochemistry and Devices, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| | - Min Song
- School of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Yuqiao Wang
- Research Center for Nano Photoelectrochemistry and Devices, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
- Yangtze River Delta Carbon Neutrality Strategy Development Institute, Southeast University, Nanjing 210096, China
| |
Collapse
|
8
|
Bian Y, Cai X, Lv Z, Xu Y, Wang H, Tan C, Liang R, Weng X. Layered Double Hydroxides: A Novel Promising 2D Nanomaterial for Bone Diseases Treatment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301806. [PMID: 37329200 PMCID: PMC10460877 DOI: 10.1002/advs.202301806] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/07/2023] [Indexed: 06/18/2023]
Abstract
Bone diseases including bone defects, bone infections, osteoarthritis, and bone tumors seriously affect life quality of the patient and bring serious economic burdens to social health management, for which the current clinical treatments bear dissatisfactory therapeutic effects. Biomaterial-based strategies have been widely applied in the treatment of orthopedic diseases but are still plagued by deficient bioreactivity. With the development of nanotechnology, layered double hydroxides (LDHs) with adjustable metal ion composition and alterable interlayer structure possessing charming physicochemical characteristics, versatile bioactive properties, and excellent drug loading and delivery capabilities arise widespread attention and have achieved considerable achievements for bone disease treatment in the last decade. However, to the authors' best knowledge, no review has comprehensively summarized the advances of LDHs in treating bone disease so far. Herein, the advantages of LDHs for orthopedic disorders treatment are outlined and the corresponding state-of-the-art achievements are summarized for the first time. The potential of LDHs-based nanocomposites for extended therapeutics for bone diseases is highlighted and perspectives for LDHs-based scaffold design are proposed for facilitated clinical translation.
Collapse
Affiliation(s)
- Yixin Bian
- Department of Orthopedic SurgeryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijing100730P. R. China
| | - Xuejie Cai
- Department of Orthopedic SurgeryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijing100730P. R. China
| | - Zehui Lv
- Department of Orthopedic SurgeryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijing100730P. R. China
| | - Yiming Xu
- Department of Orthopedic SurgeryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijing100730P. R. China
| | - Han Wang
- Department of Orthopedic SurgeryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijing100730P. R. China
| | - Chaoliang Tan
- Department of Chemistry and Center of Super‐Diamond and Advanced Films (COSDAF)City University of Hong KongKowloonHong KongP. R. China
- Shenzhen Research InstituteCity University of Hong KongShenzhen518057P. R. China
| | - Ruizheng Liang
- State Key Laboratory of Chemical Resource EngineeringBeijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Xisheng Weng
- Department of Orthopedic SurgeryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijing100730P. R. China
| |
Collapse
|
9
|
Abdel Aziz SAA, GadelHak Y, Mohamed MBED, Mahmoud R. Antimicrobial properties of promising Zn-Fe based layered double hydroxides for the disinfection of real dairy wastewater effluents. Sci Rep 2023; 13:7601. [PMID: 37164994 PMCID: PMC10172331 DOI: 10.1038/s41598-023-34488-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 05/02/2023] [Indexed: 05/12/2023] Open
Abstract
Bacterial resistance to conventional antibiotics is a serious challenge that requires novel antibacterial agents. Moreover, wastewater from dairy farms might contain countless number of pathogens, organic contaminants and heavy metals that consider a threat to the terrestrial and aquatic environment. Therefore, the development of cost-effective, highly operation-convenient, recyclable multifunctional antimicrobial agents became an urgent necessity. Layered double hydroxides (LDH) have shown promising results as antibacterial agents. However, more work is required to further investigate and improve the antimicrobial performance of LDH structures against pathogens. In this study three Zn-Fe based LDH were investigated for real dairy wastewater disinfection. The three LDH samples were cobalt substituted Zn-Fe LDH (CoZnFe), magnesium substituted Zn-Fe LDH (MgZnFe) and MgZnFe-Triazol LDH (MgZnFe-Tz) nanocomposite. Seventy-five wastewater samples were collected from a dairy farm sewage system. The sensitivity of isolated pathogens was tested against two commonly used disinfectants (Terminator and TH4) and was assessed against the three LDH samples at different concentrations. The overall prevalence of S. agalactiae, S. dysgalactiae and Staph. aureus was significantly at 80.0% (P-value = 0.008, X2 = 9.700). There was variable degree of resistance to the tested disinfectants, whereas the antimicrobial activity of CoZnFe LDH was increased significantly at a concentration of 0.005 mg/L followed by MgZnFe LDH while MgZnFe-Tz LDH showed minor antibacterial potency. It was concluded that CoZnFe LDH showed a better biocidal activity in killing the isolated resistant pathogens, making it a good choice tool in combating the zoonotic microbes in wastewater sources.
Collapse
Affiliation(s)
- Sahar Abdel Aleem Abdel Aziz
- Department of Hygiene, Zoonoses and Epidemiology, Faculty of Veterinary Medicine, Beni-Suef University, Beni Suef, 62511, Egypt
| | - Yasser GadelHak
- Department of Materials Science and Nanotechnology, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni Suef, 62511, Egypt
| | - Manar Bahaa El Din Mohamed
- Department of Hygiene, Zoonoses and Epidemiology, Faculty of Veterinary Medicine, Beni-Suef University, Beni Suef, 62511, Egypt
| | - Rehab Mahmoud
- Department of Chemistry, Faculty of Science, Beni-Suef University, Beni Suef, 62511, Egypt.
| |
Collapse
|
10
|
Awassa J, Soulé S, Cornu D, Ruby C, El-Kirat-Chatel S. Understanding the role of surface interactions in the antibacterial activity of layered double hydroxide nanoparticles by atomic force microscopy. NANOSCALE 2022; 14:10335-10348. [PMID: 35833371 DOI: 10.1039/d2nr02395d] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Understanding the mechanisms of the interactions between zinc-based layered double hydroxides (LDHs) and bacterial surfaces is of great importance to improve the efficiency of these antibiotic-free antibacterial agents. In fact, the role of surface interactions in the antibacterial activity of zinc-based LDH nanoparticles compared to that of dissolution and generation of reactive oxygen species (ROS) is still not well documented. In this study, we show that ZnAl LDH nanoparticles exhibit a strong antibacterial effect against Staphylococcus aureus by inducing serious cell wall damages as revealed by the antibacterial activity tests and atomic force microscopy (AFM) imaging, respectively. The comparison of the antibacterial properties of ZnAl LDH nanoparticles and micron-sized ZnAl LDHs also demonstrated that the antibacterial activity of Zn-based LDHs goes beyond the simple dissolution into Zn2+ antibacterial ions. Furthermore, we developed an original approach to functionalize AFM tips with LDH films in order to probe their interactions with living S. aureus cells by means of AFM-based force spectroscopy (FS). The force spectroscopy analysis revealed that antibacterial ZnAl LDH nanoparticles show specific recognition of S. aureus cells with high adhesion frequency and remarkable force magnitudes. This finding provides a first insight into the antibacterial mechanism of Zn-based LDHs through direct surface interactions by which they are able to recognize and adhere to bacterial surfaces, thus damaging them and leading to subsequent growth inhibition.
Collapse
Affiliation(s)
- Jazia Awassa
- Université de Lorraine, CNRS, LCPME, F-54000 Nancy, France.
| | - Samantha Soulé
- Université de Lorraine, CNRS, LCPME, F-54000 Nancy, France.
| | - Damien Cornu
- Université de Lorraine, CNRS, LCPME, F-54000 Nancy, France.
| | - Christian Ruby
- Université de Lorraine, CNRS, LCPME, F-54000 Nancy, France.
| | | |
Collapse
|