1
|
Královič-Kanjaková N, Asi Shirazi A, Hubčík L, Klacsová M, Keshavarzi A, Martínez JC, Combet S, Teixeira J, Uhríková D. Polymyxin B-Enriched Exogenous Lung Surfactant: Thermodynamics and Structure. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:6847-6861. [PMID: 38501650 DOI: 10.1021/acs.langmuir.3c03746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
The use of an exogenous pulmonary surfactant (EPS) to deliver other relevant drugs to the lungs is a promising strategy for combined therapy. We evaluated the interaction of polymyxin B (PxB) with a clinically used EPS, the poractant alfa Curosurf (PSUR). The effect of PxB on the protein-free model system (MS) composed of four phospholipids (diC16:0PC/16:0-18:1PC/16:0-18:2PC/16:0-18:1PG) was examined in parallel to distinguish the specificity of the composition of PSUR. We used several experimental techniques (differential scanning calorimetry, small- and wide-angle X-ray scattering, small-angle neutron scattering, fluorescence spectroscopy, and electrophoretic light scattering) to characterize the binding of PxB to both EPS. Electrostatic interactions PxB-EPS are dominant. The results obtained support the concept of cationic PxB molecules lying on the surface of the PSUR bilayer, strengthening the multilamellar structure of PSUR as derived from SAXS and SANS. A protein-free MS mimics a natural EPS well but was found to be less resistant to penetration of PxB into the lipid bilayer. PxB does not affect the gel-to-fluid phase transition temperature, Tm, of PSUR, while Tm increased by ∼+ 2 °C in MS. The decrease of the thickness of the lipid bilayer (dL) of PSUR upon PxB binding is negligible. The hydrophobic tail of the PxB molecule does not penetrate the bilayer as derived from SANS data analysis and changes in lateral pressure monitored by excimer fluorescence at two depths of the hydrophobic region of the bilayer. Changes in dL of protein-free MS show a biphasic dependence on the adsorbed amount of PxB with a minimum close to the point of electroneutrality of the mixture. Our results do not discourage the concept of a combined treatment with PxB-enriched Curosurf. However, the amount of PxB must be carefully assessed (less than 5 wt % relative to the mass of the surfactant) to avoid inversion of the surface charge of the membrane.
Collapse
Affiliation(s)
- Nina Královič-Kanjaková
- Department of Physical Chemistry of Drugs, Faculty of Pharmacy, Comenius University Bratislava, 832 32 Bratislava, Slovakia
| | - Ali Asi Shirazi
- Department of Physical Chemistry of Drugs, Faculty of Pharmacy, Comenius University Bratislava, 832 32 Bratislava, Slovakia
| | - Lukáš Hubčík
- Department of Physical Chemistry of Drugs, Faculty of Pharmacy, Comenius University Bratislava, 832 32 Bratislava, Slovakia
| | - Mária Klacsová
- Department of Physical Chemistry of Drugs, Faculty of Pharmacy, Comenius University Bratislava, 832 32 Bratislava, Slovakia
| | - Atoosa Keshavarzi
- Department of Physical Chemistry of Drugs, Faculty of Pharmacy, Comenius University Bratislava, 832 32 Bratislava, Slovakia
| | | | - Sophie Combet
- Laboratoire Léon-Brillouin (LLB), UMR12 CEA, CNRS, Université Paris-Saclay, F-91191 Gif-sur-Yvette CEDEX, France
| | - José Teixeira
- Laboratoire Léon-Brillouin (LLB), UMR12 CEA, CNRS, Université Paris-Saclay, F-91191 Gif-sur-Yvette CEDEX, France
| | - Daniela Uhríková
- Department of Physical Chemistry of Drugs, Faculty of Pharmacy, Comenius University Bratislava, 832 32 Bratislava, Slovakia
| |
Collapse
|
2
|
Keshavarzi A, Asi Shirazi A, Korfanta R, Královič N, Klacsová M, Martínez JC, Teixeira J, Combet S, Uhríková D. Thermodynamic and Structural Study of Budesonide-Exogenous Lung Surfactant System. Int J Mol Sci 2024; 25:2990. [PMID: 38474237 PMCID: PMC10931555 DOI: 10.3390/ijms25052990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/22/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
The clinical benefits of using exogenous pulmonary surfactant (EPS) as a carrier of budesonide (BUD), a non-halogenated corticosteroid with a broad anti-inflammatory effect, have been established. Using various experimental techniques (differential scanning calorimetry DSC, small- and wide- angle X-ray scattering SAXS/WAXS, small- angle neutron scattering SANS, fluorescence spectroscopy, dynamic light scattering DLS, and zeta potential), we investigated the effect of BUD on the thermodynamics and structure of the clinically used EPS, Curosurf®. We show that BUD facilitates the Curosurf® phase transition from the gel to the fluid state, resulting in a decrease in the temperature of the main phase transition (Tm) and enthalpy (ΔH). The morphology of the Curosurf® dispersion is maintained for BUD < 10 wt% of the Curosurf® mass; BUD slightly increases the repeat distance d of the fluid lamellar phase in multilamellar vesicles (MLVs) resulting from the thickening of the lipid bilayer. The bilayer thickening (~0.23 nm) was derived from SANS data. The presence of ~2 mmol/L of Ca2+ maintains the effect and structure of the MLVs. The changes in the lateral pressure of the Curosurf® bilayer revealed that the intercalated BUD between the acyl chains of the surfactant's lipid molecules resides deeper in the hydrophobic region when its content exceeds ~6 wt%. Our studies support the concept of a combined therapy utilising budesonide-enriched Curosurf®.
Collapse
Affiliation(s)
- Atoosa Keshavarzi
- Department of Physical Chemistry of Drugs, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia; (A.K.); (A.A.S.); (R.K.); (N.K.); (M.K.)
| | - Ali Asi Shirazi
- Department of Physical Chemistry of Drugs, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia; (A.K.); (A.A.S.); (R.K.); (N.K.); (M.K.)
| | - Rastislav Korfanta
- Department of Physical Chemistry of Drugs, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia; (A.K.); (A.A.S.); (R.K.); (N.K.); (M.K.)
| | - Nina Královič
- Department of Physical Chemistry of Drugs, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia; (A.K.); (A.A.S.); (R.K.); (N.K.); (M.K.)
| | - Mária Klacsová
- Department of Physical Chemistry of Drugs, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia; (A.K.); (A.A.S.); (R.K.); (N.K.); (M.K.)
| | | | - José Teixeira
- Laboratoire Léon-Brillouin (LLB), UMR12 CEA, CNRS, Université Paris-Saclay, F-91191 Gif-sur-Yvette CEDEX, France; (J.T.); (S.C.)
| | - Sophie Combet
- Laboratoire Léon-Brillouin (LLB), UMR12 CEA, CNRS, Université Paris-Saclay, F-91191 Gif-sur-Yvette CEDEX, France; (J.T.); (S.C.)
| | - Daniela Uhríková
- Department of Physical Chemistry of Drugs, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia; (A.K.); (A.A.S.); (R.K.); (N.K.); (M.K.)
| |
Collapse
|
3
|
Čelková A, Búcsi A, Klacsová M, Fazekaš T, Martínez JC, Uhríková D. Oseltamivir phosphate interaction with model membranes. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184273. [PMID: 38211646 DOI: 10.1016/j.bbamem.2024.184273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/20/2023] [Accepted: 01/04/2024] [Indexed: 01/13/2024]
Abstract
Oseltamivir belongs to the neuraminidase inhibitors, developed against the influenza virus, and registered under the trademark Tamiflu. Despite its long-term acquaintance, there is limited information in the literature about its physicochemical and structural properties in a lipid-water system. We present an experimentally determined partition coefficient with structural information on the interaction of oseltamivir with the model membrane, its possible location, and its effect on the membrane thermodynamics. The hydrophobic part of the lipid bilayer is affected to a moderate extent, which was proved by slight changes in thermal and structural properties. Hereby, interaction of oseltamivir with the phospholipid bilayer induces concentration dependent decrease of lateral pressure in the bilayer acyl chain region. Oseltamivir charges the bilayer surface positively, which results in the zeta potential increase and changes in anisotropic properties studied by the polarised light microscopy. At the highest oseltamivir concentrations studied, the multilamellar structure is extensively disturbed, likely due to electrostatic repulsion between the adjacent bilayers.
Collapse
Affiliation(s)
- Adriána Čelková
- Department of Physical Chemistry of Drugs, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov10, 832 32 Bratislava, Slovakia
| | - Alexander Búcsi
- Department of Physical Chemistry of Drugs, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov10, 832 32 Bratislava, Slovakia.
| | - Mária Klacsová
- Department of Physical Chemistry of Drugs, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov10, 832 32 Bratislava, Slovakia
| | - Tomáš Fazekaš
- Department of Physical Chemistry of Drugs, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov10, 832 32 Bratislava, Slovakia
| | | | - Daniela Uhríková
- Department of Physical Chemistry of Drugs, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov10, 832 32 Bratislava, Slovakia
| |
Collapse
|