1
|
Sepehrnia N, Teshnizi FA, Hallett P, Coyne M, Shokri N, Peth S. Modeling bacterial transport and fate: Insight into the cascading consequences of soil water repellency and contrasting hydraulic conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176196. [PMID: 39278475 DOI: 10.1016/j.scitotenv.2024.176196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/02/2024] [Accepted: 09/09/2024] [Indexed: 09/18/2024]
Abstract
The mechanisms governing bacteria transport and fate rely on their hydrophobicity and the wettability of porous media across a wide range of soil moisture conditions, extending from extreme dryness to highly saturated states. However, it largely remains unknown how transport, retention, and release mechanisms change in natural soil systems in such conditions. We thus optimized our previously published unique transport data for hydrophilic Escherichia coli (E. coli) and hydrophobic Rhodococcus erythropolis (R. erythropolis) bacteria, and bromide (Br-) in two distinct wettable and water-repellent soils at column scale. The soils were initially dry, followed by injecting influents in two pulses followed by a flushing step under saturated flow conditions for six pore volumes. We conducted simulations for each pulse separately and simultaneously for soils. There were differences in hydraulic properties of the soils due to their contrasting wetting characteristic in separate and simultaneously modeling of each pulse affecting Br- and bacteria transport fate. Bacteria attachment was the dominant retention mechanism in both soils in these conditions. Notably, the 82.4 min-1 attachment rate in wettable soil was almost 10× greater than in the water-repellent soil and it governed optimization of bacteria die-off. Physicochemical detachment and physical release unraveled the effect of bacteria size and hydrophobicity interacting with soil wettability. The smaller and hydrophobic R. erythropolis detached more easily while hydrophilic E. coli released; the rates were enhanced by soil water repellency. Further research is needed to reveal the effects of surface wettability properties on bacteria survival especially at the nanoscale.
Collapse
Affiliation(s)
- Nasrollah Sepehrnia
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK; School of Biosciences, University of Nottingham, Nottingham, UK.
| | - Forough Abbasi Teshnizi
- Department of Water Engineering, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran
| | - Paul Hallett
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Mark Coyne
- University of Kentucky, Department of Plant and Soil Sciences, United States(1)
| | - Nima Shokri
- Institute of Geo-Hydroinformatics, Hamburg University of Technology, Am Schwarzenberg-Campus 3 (E), 21073 Hamburg, Germany; United Nations University Hub on Engineering to Face Climate Change at the Hamburg University of Technology, United Nations University Institute for Water, Environment and Health (UNU-INWEH), Hamburg, Germany
| | - Stephan Peth
- Institute of Earth System Sciences, Leibniz Universität Hannover, Herrenhäuser Str. 2, D-30419 Hannover, Germany
| |
Collapse
|
2
|
Deng J, Zhang W, Zhang L, Qin C, Wang H, Ling W. Micro-interfacial behavior of antibiotic-resistant bacteria and antibiotic resistance genes in the soil environment: A review. ENVIRONMENT INTERNATIONAL 2024; 191:108972. [PMID: 39180776 DOI: 10.1016/j.envint.2024.108972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/11/2024] [Accepted: 08/19/2024] [Indexed: 08/26/2024]
Abstract
Overutilization and misuse of antibiotics in recent decades markedly intensified the rapid proliferation and diffusion of antibiotic resistance genes (ARGs) within the environment, thereby elevating ARGs to the status of a global public health crisis. Recognizing that soil acts as a critical reservoir for ARGs, environmental researchers have made great progress in exploring the sources, distribution, and spread of ARGs in soil. However, the microscopic state and micro-interfacial behavior of ARGs in soil remains inadequately understood. In this study, we reviewed the micro-interfacial behaviors of antibiotic-resistant bacteria (ARB) in soil and porous media, predominantly including migration-deposition, adsorption, and biofilm formation. Meanwhile, adsorption, proliferation, and degradation were identified as the primary micro-interfacial behaviors of ARGs in the soil, with component of soil serving as significant determinant. Our work contributes to the further comprehension of the microstates and processes of ARB and ARGs in the soil environments and offers a theoretical foundation for managing and mitigating the risks associated with ARG contamination.
Collapse
Affiliation(s)
- Jibao Deng
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenkang Zhang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Lingyu Zhang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Chao Qin
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Hefei Wang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Wanting Ling
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
3
|
Qin J, He L, Su X, Wang S, Tong M. Starvation Process Would Induce Different Bacterial Mobilities and Attachment Performances in Porous Media without and with Nutrients on Surfaces. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:13879-13889. [PMID: 39047087 DOI: 10.1021/acs.est.4c02533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
The influence and mechanisms of starvation on the bacterial mobile performance in porous media with different nutrition conditions are not well understood. The present study systematically investigated the impacts of starvation on the mobility and attachment of both Gram-negative and Gram-positive strains in porous media without and with nutrients on surfaces in both simulated and real water samples. We found that regardless of strain types and water chemistries, starvation would greatly inhibit bacterial attachment onto bare porous media without nutrients yet could significantly enhance cell attachment onto porous media with nutrients on their surfaces. The mechanisms driving the opposite transport behaviors induced by starvation in porous media without and with nutrients were totally different. We found that the starvation process decreased cell motility and increased repulsive force between bacteria and porous media via decreasing cell sizes and zeta potentials, reducing EPS secretion and cell hydrophobicity, thus increasing transport/inhibiting attachment of bacteria in porous media without nutrients on sand surfaces. In contrast, through strengthening the positive chemotactic response of bacteria to nutrients, the starvation process greatly enhanced bacterial attachment onto porous media with nutrients on sand surfaces. Clearly, via modification of the nutrient conditions in porous media, the mobility/attachment performance of bacteria could be regulated.
Collapse
Affiliation(s)
- Jianmei Qin
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P. R. China
| | - Lei He
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P. R. China
| | - Xiangyu Su
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P. R. China
- Beijing Key Laboratory of Water Resources & Environmental, Engineering, China University of Geosciences (Beijing), Beijing 100083, China
| | - Shuai Wang
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P. R. China
| | - Meiping Tong
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
4
|
Zhang D, Jiang J, Shi H, Lu L, Zhang M, Lin J, Lü T, Huang J, Zhong Z, Zhao H. Nonionic surfactant Tween 80-facilitated bacterial transport in porous media: A nonmonotonic concentration-dependent performance, mechanism, and machine learning prediction. ENVIRONMENTAL RESEARCH 2024; 251:118670. [PMID: 38493849 DOI: 10.1016/j.envres.2024.118670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/06/2024] [Accepted: 03/09/2024] [Indexed: 03/19/2024]
Abstract
The surfactant-enhanced bioremediation (SEBR) of organic-contaminated soil is a promising soil remediation technology, in which surfactants not only mobilize pollutants, but also alter the mobility of bacteria. However, the bacterial response and underlying mechanisms remain unclear. In this study, the effects and mechanisms of action of a selected nonionic surfactant (Tween 80) on Pseudomonas aeruginosa transport in soil and quartz sand were investigated. The results showed that bacterial migration in both quartz sand and soil was significantly enhanced with increasing Tween 80 concentration, and the greatest migration occurred at a critical micelle concentration (CMC) of 4 for quartz sand and 30 for soil, with increases of 185.2% and 27.3%, respectively. The experimental results and theoretical analysis indicated that Tween 80-facilitated bacterial migration could be mainly attributed to competition for soil/sand surface sorption sites between Tween 80 and bacteria. The prior sorption of Tween 80 onto sand/soil could diminish the available sorption sites for P. aeruginosa, resulting in significant decreases in deposition parameters (70.8% and 33.3% decrease in KD in sand and soil systems, respectively), thereby increasing bacterial transport. In the bacterial post-sorption scenario, the subsequent injection of Tween 80 washed out 69.8% of the bacteria retained in the quartz sand owing to the competition of Tween 80 with pre-sorbed bacteria, as compared with almost no bacteria being eluted by NaCl solution. Several machine learning models have been employed to predict Tween 80-faciliated bacterial transport. The results showed that back-propagation neural network (BPNN)-based machine learning could predict the transport of P. aeruginosa through quartz sand with Tween 80 in-sample (2 CMC) and out-of-sample (10 CMC) with errors of 0.79% and 3.77%, respectively. This study sheds light on the full understanding of SEBR from the viewpoint of degrader facilitation.
Collapse
Affiliation(s)
- Dong Zhang
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, Zhejiang, China
| | - Jiacheng Jiang
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, Zhejiang, China
| | - Huading Shi
- Technical Centre for Soil, Agricultural and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing, 100012, China.
| | - Li Lu
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, Zhejiang, China
| | - Ming Zhang
- Department of Environmental Science and Engineering, China Jiliang University, Hangzhou, 310018, Zhejiang, China
| | - Jun Lin
- Institute of Carbon Neutrality and New Energy, School of Electronics and Information, Hangzhou Dianzi University, Hangzhou, 310018, Zhejiang, China
| | - Ting Lü
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, Zhejiang, China
| | - Jingang Huang
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, Zhejiang, China
| | - Zhishun Zhong
- Guangdong Jiandi Agriculture Technology Co. Ltd., Foshan, Guangdong, 528200, China
| | - Hongting Zhao
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, Zhejiang, China.
| |
Collapse
|
5
|
Shin J, Jeong R, Kumar H, Park C, Park SS, Kim K. Nanoparticle-based nanocomposite coatings with postprocessing for enhanced antimicrobial capacity of polymeric film. Biotechnol Bioeng 2024; 121:507-523. [PMID: 37905703 DOI: 10.1002/bit.28596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 09/29/2023] [Accepted: 10/10/2023] [Indexed: 11/02/2023]
Abstract
Bacterial adhesion and biofilm formation on surfaces pose a significant risk of microbial contamination and chronic diseases, leading to potential health complications. To mitigate this concern, the implementation of antibacterial coatings becomes paramount in reducing pathogen propagation on contaminated surfaces. To address this requirement, our study focuses on developing cost-effective and sustainable methods using polymer composite coatings. Copper and titanium dioxide nanoparticles were used to assess their active antimicrobial functions. After coating the surface with nanoparticles, four different combinations of two postprocessing treatments were performed. Intense pulsed light was utilized to sinter the coatings further, and plasma etching was applied to manipulate the physical properties of the nanocomposite-coated sheet surface. Bacterial viability was comparatively analyzed at four different time points (0, 30, 60, and 120 min) upon contact with the nanocomposite coatings. The samples with nanoparticle coatings and postprocessing treatments showed an above-average 84.82% mortality rate at 30 min and an average of 89.77% mortality rate at 120 min of contact. In contrast, the control sample, without nanoparticle coatings and postprocessing treatments, showed a 95% microbe viability after 120 min of contact. Through this study, we gained critical insights into effective strategies for preventing the spread of microorganisms on high-touch surfaces, thereby contributing to the advancement of sustainable antimicrobial coatings.
Collapse
Affiliation(s)
- Jaemyung Shin
- Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada
| | - Robin Jeong
- Department of Mechanical and Manufacturing Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada
| | - Hitendra Kumar
- Department of Mechanical and Manufacturing Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Chaneel Park
- Department of Mechanical and Manufacturing Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada
| | - Simon S Park
- Department of Mechanical and Manufacturing Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada
| | - Keekyoung Kim
- Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada
- Department of Mechanical and Manufacturing Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|