1
|
Xie L, Wu H, Li Y, Shi L, Liu Y. Recent Development of Nanozymes for Combating Bacterial Drug Resistance: A Review. Adv Healthc Mater 2024:e2402659. [PMID: 39388414 DOI: 10.1002/adhm.202402659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/31/2024] [Indexed: 10/12/2024]
Abstract
The World Health Organization has warned that without effective action, deaths from drug-resistant bacteria can exceed 10 million annually, making it the leading cause of death. Conventional antibiotics are becoming less effective due to rapid bacterial drug resistance and slowed new antibiotic development, necessitating new strategies. Recently, materials with catalytic/enzymatic properties, known as nanozymes, have been developed, inspired by natural enzymes essential for bacterial eradication. Unlike recent literature reviews that broadly cover nanozyme design and biomedical applications, this review focuses on the latest advancements in nanozymes for combating bacterial drug resistance, emphasizing their design, structural characteristics, applications in combination therapy, and future prospects. This approach aims to promote nanozyme development for combating bacterial drug resistance, especially towards clinical translation.
Collapse
Affiliation(s)
- Lingping Xie
- The People's Hospital of Yuhuan, Taizhou, Zhejiang, 317600, China
| | - Haoyue Wu
- Department of International VIP Dental Clinic, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, 300041, China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, 300041, China
| | - Yuanfeng Li
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Linqi Shi
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Yong Liu
- The People's Hospital of Yuhuan, Taizhou, Zhejiang, 317600, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| |
Collapse
|
2
|
Wang J, Su L, Li Y, Liu Y, Xie L. Nanoscale fluconazole-constructed metal-organic frameworks with smart drug release for eradication of Candida biofilms in vulvovaginitis infection. Colloids Surf B Biointerfaces 2024; 245:114238. [PMID: 39270401 DOI: 10.1016/j.colsurfb.2024.114238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
Fungal infections associated with oral, gynecological, and skin ailments pose significant clinical challenges. The presence of biofilms often hampers the efficacy of conventional antifungal drugs owing to the complex microenvironment they create. In this study, the widely used antifungal medication fluconazole is utilized as a foundational component to be incorporated into zinc 2-methylimidazolate frameworks, resulting in the synthesis of nanoscale fluconazole-constructed metal-organic frameworks (F-ZIF). The F-ZIF is constructed through coordination interactions between zinc and fluconazole, retaining the structure and pH-responsiveness of the zinc 2-methylimidazolate framework. The pH-responsiveness F-ZIF makes sure the fluconazole can be released in acidic biofilm, which prevents the undesired release in healthy tissue, resulting in good biocompatibility both in vitro and in vivo. The in vitro studies demonstrated that F-ZIF exhibits enhanced efficacy in eradicating fungal pathogens in their biofilm growth state compared with the free fluconazole. Furthermore, in vivo experiments reveal the better effectiveness of F-ZIF in treating Candida albicans-induced vulvovaginal candidiasis, and less infection-related inflammation was observed. Hence, the one-port synthetic F-ZIF presents a promising solution for addressing fungal biofilm-related infections.
Collapse
Affiliation(s)
- Jinhui Wang
- The People's Hospital of Yuhuan, Yuhuan, Zhejiang 317600, China
| | - Linzhu Su
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
| | - Yuanfeng Li
- Translational Medicine Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Yong Liu
- Wenzhou Institute, University of Chinese Academy of Sciences, Zhejiang 325001, China.
| | - Lingping Xie
- The People's Hospital of Yuhuan, Yuhuan, Zhejiang 317600, China.
| |
Collapse
|
3
|
MubarakAli D, Saravanakumar K, Ganeshalingam A, Santosh SS, De Silva S, Park JU, Lee CM, Cho SH, Kim SR, Cho N, Thiripuranathar G, Park S. Recent Progress in Multifunctional Stimuli-Responsive Combinational Drug Delivery Systems for the Treatment of Biofilm-Forming Bacterial Infections. Pharmaceutics 2024; 16:976. [PMID: 39204321 PMCID: PMC11359499 DOI: 10.3390/pharmaceutics16080976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/09/2024] [Accepted: 07/17/2024] [Indexed: 09/04/2024] Open
Abstract
Drug-resistant infectious diseases pose a substantial challenge and threat to medical regimens. While adaptive laboratory evolution provides foresight for encountering such situations, it has inherent limitations. Novel drug delivery systems (DDSs) have garnered attention for overcoming these hurdles. Multi-stimuli responsive DDSs are particularly effective due to their reduced background leakage and targeted drug delivery to specific host sites for pathogen elimination. Bacterial infections create an acidic state in the microenvironment (pH: 5.0-5.5), which differs from normal physiological conditions (pH: 7.4). Infected areas are characterized by the overexpression of hyaluronidase, gelatinase, phospholipase, and other virulence factors. Consequently, several effective stimuli-responsive DDSs have been developed to target bacterial pathogens. Additionally, biofilms, structured communities of bacteria encased in a self-produced polymeric matrix, pose a significant challenge by conferring resistance to conventional antimicrobial treatments. Recent advancements in nano-drug delivery systems (nDDSs) show promise in enhancing antimicrobial efficacy by improving drug absorption and targeting within the biofilm matrix. nDDSs can deliver antimicrobials directly to the biofilm, facilitating more effective eradication of these resilient bacterial communities. Herein, this review examines challenges in DDS development, focusing on enhancing antibacterial activity and eradicating biofilms without adverse effects. Furthermore, advances in immune system modulation and photothermal therapy are discussed as future directions for the treatment of bacterial diseases.
Collapse
Affiliation(s)
- Davoodbasha MubarakAli
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai 600048, Tamil Nadu, India;
| | - Kandasamy Saravanakumar
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea; (K.S.); (N.C.)
- Center of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Archchana Ganeshalingam
- College of Chemical Sciences, Institute of Chemistry Ceylon, Welikada, Rajagiriya 10107, Sri Lanka; (A.G.); (S.D.S.)
| | | | - Shanali De Silva
- College of Chemical Sciences, Institute of Chemistry Ceylon, Welikada, Rajagiriya 10107, Sri Lanka; (A.G.); (S.D.S.)
| | - Jung Up Park
- Division of Practical Application, Honam National Institute of Biological Resources, 99, Gohadoan-gil, Mokpo-si 58762, Republic of Korea;
| | - Chang-Min Lee
- Department of Veterinary Internal Medicine, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea;
| | - Su-Hyeon Cho
- Gwangju Center, Korea Basic Science Institute (KBSI), Gwangju 61751, Republic of Korea;
| | - Song-Rae Kim
- Metropolitan Seoul Center, Korea Basic Science Institute (KBSI), Seoul 03759, Republic of Korea;
| | - Namki Cho
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea; (K.S.); (N.C.)
| | - Gobika Thiripuranathar
- College of Chemical Sciences, Institute of Chemistry Ceylon, Welikada, Rajagiriya 10107, Sri Lanka; (A.G.); (S.D.S.)
| | - SeonJu Park
- Metropolitan Seoul Center, Korea Basic Science Institute (KBSI), Seoul 03759, Republic of Korea;
| |
Collapse
|
4
|
Marchianò V, Duarte AC, Agún S, Luque S, Marcet I, Fernández L, Matos M, Blanco MDC, García P, Gutiérrez G. Phage Lytic Protein CHAPSH3b Encapsulated in Niosomes and Gelatine Films. Microorganisms 2024; 12:119. [PMID: 38257944 PMCID: PMC10819965 DOI: 10.3390/microorganisms12010119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Antimicrobial resistance (AMR) has emerged as a global health challenge, sparking worldwide interest in exploring the antimicrobial potential of natural compounds as an alternative to conventional antibiotics. In recent years, one area of focus has been the utilization of bacteriophages and their derivative proteins. Specifically, phage lytic proteins, or endolysins, are specialized enzymes that induce bacterial cell lysis and can be efficiently produced and purified following overexpression in bacteria. Nonetheless, a significant limitation of these proteins is their vulnerability to certain environmental conditions, which may impair their effectiveness. Encapsulating endolysins in vesicles could mitigate this issue by providing added protection to the proteins, enabling controlled release, and enhancing their stability, particularly at temperatures around 4 °C. In this work, the chimeric lytic protein CHAPSH3b was encapsulated within non-ionic surfactant-based vesicles (niosomes) created using the thin film hydrating method (TFH). These protein-loaded niosomes were then characterized, revealing sizes in the range of 30-80 nm, zeta potentials between 30 and 50 mV, and an encapsulation efficiency (EE) of 50-60%. Additionally, with the objective of exploring their potential application in the food industry, these endolysin-loaded niosomes were incorporated into gelatine films. This was carried out to evaluate their stability and antimicrobial efficacy against Staphylococcus aureus.
Collapse
Affiliation(s)
- Verdiana Marchianò
- Department of Physical and Analytical Chemistry, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain (M.d.C.B.)
- Department of Chemical and Environmental Engineering, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain; (S.L.); (I.M.); (M.M.)
| | - Ana Catarina Duarte
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Paseo Río Linares s/n., 33300 Villaviciosa, Spain; (A.C.D.); (S.A.); (L.F.)
- DairySafe Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Seila Agún
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Paseo Río Linares s/n., 33300 Villaviciosa, Spain; (A.C.D.); (S.A.); (L.F.)
- DairySafe Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Susana Luque
- Department of Chemical and Environmental Engineering, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain; (S.L.); (I.M.); (M.M.)
| | - Ismael Marcet
- Department of Chemical and Environmental Engineering, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain; (S.L.); (I.M.); (M.M.)
| | - Lucía Fernández
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Paseo Río Linares s/n., 33300 Villaviciosa, Spain; (A.C.D.); (S.A.); (L.F.)
- DairySafe Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - María Matos
- Department of Chemical and Environmental Engineering, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain; (S.L.); (I.M.); (M.M.)
- Instituto Universitario de Biotecnología de Asturias, University of Oviedo, 33006 Oviedo, Spain
| | - Mª del Carmen Blanco
- Department of Physical and Analytical Chemistry, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain (M.d.C.B.)
- Instituto Universitario de Biotecnología de Asturias, University of Oviedo, 33006 Oviedo, Spain
| | - Pilar García
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Paseo Río Linares s/n., 33300 Villaviciosa, Spain; (A.C.D.); (S.A.); (L.F.)
- DairySafe Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Gemma Gutiérrez
- Department of Chemical and Environmental Engineering, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain; (S.L.); (I.M.); (M.M.)
- Instituto Universitario de Biotecnología de Asturias, University of Oviedo, 33006 Oviedo, Spain
| |
Collapse
|
5
|
Zhou C, Liu Y, Li Y, Shi L. Recent advances and prospects in nanomaterials for bacterial sepsis management. J Mater Chem B 2023; 11:10778-10792. [PMID: 37901894 DOI: 10.1039/d3tb02220j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Bacterial sepsis is a life-threatening condition caused by bacteria entering the bloodstream and triggering an immune response, underscoring the importance of early recognition and prompt treatment. Nanomedicine holds promise for addressing sepsis through improved diagnostics, nanoparticle biosensors for detection and imaging, enhanced antibiotic delivery, combating resistance, and immune modulation. However, challenges remain in ensuring safety, regulatory compliance, scalability, and cost-effectiveness before clinical implementation. Further research is needed to optimize design, efficacy, safety, and regulatory strategies for effective utilization of nanomedicines in bacterial sepsis diagnosis and treatment. This review highlights the significant potential of nanomedicines, including improved drug delivery, enhanced diagnostics, and immunomodulation for bacterial sepsis. It also emphasizes the need for further research to optimize design, efficacy, safety profiles, and address regulatory challenges to facilitate clinical translation.
Collapse
Affiliation(s)
- Chaoyang Zhou
- Department of Critical Care Medicine, The People's Hospital of Yuhuan, Taizhou, Zhejiang 317600, China.
| | - Yong Liu
- Department of Critical Care Medicine, The People's Hospital of Yuhuan, Taizhou, Zhejiang 317600, China.
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China.
| | - Yuanfeng Li
- Department of Critical Care Medicine, The People's Hospital of Yuhuan, Taizhou, Zhejiang 317600, China.
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Linqi Shi
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|