1
|
RNA Sequencing Reveals Widespread Transcription of Natural Antisense RNAs in Entamoeba Species. Microorganisms 2022; 10:microorganisms10020396. [PMID: 35208849 PMCID: PMC8874941 DOI: 10.3390/microorganisms10020396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/26/2022] [Accepted: 02/05/2022] [Indexed: 11/17/2022] Open
Abstract
Entamoeba is a genus of Amoebozoa that includes the intestine-colonizing pathogenic species Entamoeba histolytica. To understand the basis of gene regulation in E. histolytica from an evolutionary perspective, we have profiled the transcriptomes of its closely related species E. dispar, E. moshkovskii and E. invadens. Genome-wide identification of transcription start sites (TSS) and polyadenylation sites (PAS) revealed the similarities and differences of their gene regulatory sequences. In particular, we found the widespread initiation of antisense transcription from within the gene coding sequences is a common feature among all Entamoeba species. Interestingly, we observed the enrichment of antisense transcription in genes involved in several processes that are common to species infecting the human intestine, e.g., the metabolism of phospholipids. These results suggest a potentially conserved and compact gene regulatory system in Entamoeba.
Collapse
|
2
|
Kaur D, Agrahari M, Singh SS, Mandal PK, Bhattacharya A, Bhattacharya S. Transcriptomic analysis of Entamoeba histolytica reveals domain-specific sense strand expression of LINE-encoded ORFs with massive antisense expression of RT domain. Plasmid 2021; 114:102560. [PMID: 33482228 DOI: 10.1016/j.plasmid.2021.102560] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/29/2020] [Accepted: 12/31/2020] [Indexed: 11/29/2022]
Abstract
LINEs are retrotransposable elements found in diverse organisms. Their activity is kept in check by several mechanisms, including transcriptional silencing. Here we have analyzed the transcription status of LINE1 copies in the early-branching parasitic protist Entamoeba histolytica. Full-length EhLINE1 encodes ORF1, and ORF2 with reverse transcriptase (RT) and endonuclease (EN) domains. RNA-Seq analysis of EhLINE1 copies (both truncated and full-length) showed unique features. Firstly, although 20/41 transcribed copies were full-length, we failed to detect any full-length transcripts. Rather, sense-strand transcripts mapped to the functional domains- ORF1, RT and EN. Secondly, there was strong antisense transcription specifically from RT domain. No antisense transcripts were seen from ORF1. Antisense RT transcripts did not encode known functional peptides. They could possibly be involved in attenuating translation of RT domain, as we failed to detect ORF2p, whereas ORF1p was detectable. Lack of full-length transcripts and strong antisense RT expression may serve to limit EhLINE1 retrotransposition.
Collapse
Affiliation(s)
- Devinder Kaur
- School of Environmental Sciences, Jawaharlal Nehru University, India
| | - Mridula Agrahari
- School of Environmental Sciences, Jawaharlal Nehru University, India
| | | | | | | | | |
Collapse
|
3
|
Possible role played by the SINE2 element in gene regulation, as demonstrated by differential processing and polyadenylation in avirulent strains of E. histolytica. Antonie van Leeuwenhoek 2021; 114:209-221. [PMID: 33394209 DOI: 10.1007/s10482-020-01504-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 11/25/2020] [Indexed: 10/22/2022]
Abstract
Entamoeba histolytica represents a useful model in parasitic organisms due to its complex genomic organization and survival mechanisms. To counteract pathogenic organisms, it is necessary to characterize their molecular biology to design new strategies to combat them. In this report, we investigated a less-known genetic element, short interspersed nuclear element 2 (SINE2), that is present in this ameba and is highly transcribed and polyadenylated. In this study, we show that in two different nonvirulent strains of E. histolytica, SINE2 is differentially processed into two transcript fragments, that is, a full-length 560-nt fragment and a shorter 393-nt fragment bearing an approximately 18-nt polyadenylation tail. Sequence analysis of the SINE2 transcript showed that a Musashi-like protein may bind to it. Also, two putative Musashi-like sequences were identified on the transcript. Semiquantitative expression analysis of the two Musashi-like proteins identified in the E. histolytica genome (XP_648918 and XP_649094) showed that XP_64094 is overexpressed in the nonvirulent strains tested. The information available in the literature and the results presented in this report indicate that SINE2 may affect other genes, as observed with the epigenetic silencing of the G3 strain, by an antisense mechanism or via RNA-protein interactions that may ultimately be involved in the phenotype of nonvirulent strains of E. histolytica.
Collapse
|
4
|
Mornico D, Hon CC, Koutero M, Weber C, Coppee JY, Dillies MA, Guillen N. Genomic determinants for initiation and length of natural antisense transcripts in Entamoeba histolytica. Sci Rep 2020; 10:20190. [PMID: 33214622 PMCID: PMC7677554 DOI: 10.1038/s41598-020-77010-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 11/02/2020] [Indexed: 01/27/2023] Open
Abstract
Natural antisense transcripts (NAT) have been reported in prokaryotes and eukaryotes. While the functions of most reported NATs remain unknown, their potentials in regulating the transcription of their counterparts have been speculated. Entamoeba histolytica, which is a unicellular eukaryotic parasite, has a compact protein-coding genome with very short intronic and intergenic regions. The regulatory mechanisms of gene expression in this compact genome are under-described. In this study, by genome-wide mapping of RNA-Seq data in the genome of E. histolytica, we show that a substantial fraction of its protein-coding genes (28%) has significant transcription on their opposite strand (i.e. NAT). Intriguingly, we found the location of transcription start sites or polyadenylation sites of NAT are determined by the specific motifs encoded on the opposite strand of the gene coding sequences, thereby providing a compact regulatory system for gene transcription. Moreover, we demonstrated that NATs are globally up-regulated under various environmental conditions including temperature stress and pathogenicity. While NATs do not appear to be consequences of spurious transcription, they may play a role in regulating gene expression in E. histolytica, a hypothesis which needs to be tested.
Collapse
Affiliation(s)
- Damien Mornico
- Hub de Bioinformatique et Biostatistique - Département Biologie Computationnelle, CNRS USR 3756, Institut Pasteur, Paris, France.
| | - Chung-Chau Hon
- Unité Biologie Cellulaire du Parasitisme, Institut Pasteur, Paris, France.,Institut National de La Santé Et de La Recherche Médicale, INSERM U786, Paris, France.,Laboratory for Genome Information Analysis, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho. Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Mikael Koutero
- Plate-forme Transcriptome et Epigénome, Institut Pasteur, Paris, France
| | - Christian Weber
- Unité Biologie Cellulaire du Parasitisme, Institut Pasteur, Paris, France.,Institut National de La Santé Et de La Recherche Médicale, INSERM U786, Paris, France
| | - Jean-Yves Coppee
- Plate-forme Transcriptome et Epigénome, Institut Pasteur, Paris, France
| | - Marie-Agnes Dillies
- Hub de Bioinformatique et Biostatistique - Département Biologie Computationnelle, CNRS USR 3756, Institut Pasteur, Paris, France
| | - Nancy Guillen
- Unité Biologie Cellulaire du Parasitisme, Institut Pasteur, Paris, France. .,Institut National de La Santé Et de La Recherche Médicale, INSERM U786, Paris, France. .,Centre National de La Recherche Scientifique, CNRS ERL9195, Paris, France.
| |
Collapse
|
5
|
Ospina-Villa JD, Tovar-Ayona BJ, López-Camarillo C, Soto-Sánchez J, Ramírez-Moreno E, Castañón-Sánchez CA, Marchat LA. mRNA Polyadenylation Machineries in Intestinal Protozoan Parasites. J Eukaryot Microbiol 2020; 67:306-320. [PMID: 31898347 DOI: 10.1111/jeu.12781] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/16/2019] [Accepted: 12/22/2019] [Indexed: 12/22/2022]
Abstract
In humans, mRNA polyadenylation involves the participation of about 20 factors in four main complexes that recognize specific RNA sequences. Notably, CFIm25, CPSF73, and PAP have essential roles for poly(A) site selection, mRNA cleavage, and adenosine residues polymerization. Besides the relevance of polyadenylation for gene expression, information is scarce in intestinal protozoan parasites that threaten human health. To better understand polyadenylation in Entamoeba histolytica, Giardia lamblia, and Cryptosporidium parvum, which represent leading causes of diarrhea worldwide, genomes were screened for orthologs of human factors. Results showed that Entamoeba histolytica and C. parvum have 16 and 12 proteins out of the 19 human proteins used as queries, respectively, while G. lamblia seems to have the smallest polyadenylation machinery with only six factors. Remarkably, CPSF30, CPSF73, CstF77, PABP2, and PAP, which were found in all parasites, could represent the core polyadenylation machinery. Multiple genes were detected for several proteins in Entamoeba, while gene redundancy is lower in Giardia and Cryptosporidium. Congruently with their relevance in the polyadenylation process, CPSF73 and PAP are present in all parasites, and CFIm25 is only missing in Giardia. They conserve the functional domains and predicted folding of human proteins, suggesting they may have the same roles in polyadenylation.
Collapse
Affiliation(s)
- Juan David Ospina-Villa
- Independent Researcher, Transversal 27A Sur # 42-14, C.P. 055421, Envigado, Antioquia, Colombia
| | - Brisna Joana Tovar-Ayona
- Posgrados en Biomedicina Molecular y en Biotecnología, ENMH, Instituto Politécnico Nacional, Av. Guillermo Massieu Helguera 239, Col. La Escalera, Gustavo A. Madero, C.P. 07320, Ciudad de México, Mexico
| | - César López-Camarillo
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, San Lorenzo 290, Col. del Valle Sur, Benito Juárez, C.P. 03100, Ciudad de México, Mexico
| | - Jacqueline Soto-Sánchez
- Posgrados en Biomedicina Molecular y en Biotecnología, ENMH, Instituto Politécnico Nacional, Av. Guillermo Massieu Helguera 239, Col. La Escalera, Gustavo A. Madero, C.P. 07320, Ciudad de México, Mexico
| | - Esther Ramírez-Moreno
- Posgrados en Biomedicina Molecular y en Biotecnología, ENMH, Instituto Politécnico Nacional, Av. Guillermo Massieu Helguera 239, Col. La Escalera, Gustavo A. Madero, C.P. 07320, Ciudad de México, Mexico
| | - Carlos A Castañón-Sánchez
- Hospital Regional de Alta Especialidad de Oaxaca, Aldama s/n, Col. Centro, C.P. 71256 San Bartolo Coyotepec, Oaxaca, Mexico
| | - Laurence A Marchat
- Posgrados en Biomedicina Molecular y en Biotecnología, ENMH, Instituto Politécnico Nacional, Av. Guillermo Massieu Helguera 239, Col. La Escalera, Gustavo A. Madero, C.P. 07320, Ciudad de México, Mexico
| |
Collapse
|
6
|
Naiyer S, Bhattacharya A, Bhattacharya S. Advances in Entamoeba histolytica Biology Through Transcriptomic Analysis. Front Microbiol 2019; 10:1921. [PMID: 31481949 PMCID: PMC6710346 DOI: 10.3389/fmicb.2019.01921] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/05/2019] [Indexed: 12/13/2022] Open
Abstract
A large number of transcriptome-level studies in Entamoeba histolytica, the protozoan parasite that causes amoebiasis, have investigated gene expression patterns to help understand the pathology and biology of the organism. They have compared virulent and avirulent strains in lab culture and after tissue invasion, cells grown under different stress conditions, response to anti-amoebic drug treatments, and gene expression changes during the process of encystation. These studies have revealed interesting molecules/pathways that will help increase our mechanistic understanding of differentially expressed genes during growth perturbations and tissue invasion. Some of the important insights obtained from transcriptome studies include the observations that regulation of carbohydrate metabolism may be an important determinant for tissue invasion, while the novel up-regulated genes during encystation include phospholipase D, and meiotic genes, suggesting the possibility of meiosis during the process. Classification of genes according to expression levels showed that amongst the highly transcribed genes in cultured E. histolytica trophozoites were some virulence factors, raising the question of the role of these factors in normal parasite growth. Promoter motifs associated with differential gene expression and regulation were identified. Some of these motifs associated with high gene expression were located downstream of start codon, and were required for efficient transcription. The listing of E. histolytica genes according to transcript expression levels will help us determine the scale of post-transcriptional regulation, and the possible roles of predicted promoter motifs. The small RNA transcriptome is a valuable resource for detailed structural and functional analysis of these molecules and their regulatory roles. These studies provide new drug targets and enhance our understanding of gene regulation in E. histolytica.
Collapse
Affiliation(s)
- Sarah Naiyer
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Alok Bhattacharya
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sudha Bhattacharya
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
7
|
Valdés-Flores J, López-Rosas I, López-Camarillo C, Ramírez-Moreno E, Ospina-Villa JD, Marchat LA. Life and Death of mRNA Molecules in Entamoeba histolytica. Front Cell Infect Microbiol 2018; 8:199. [PMID: 29971219 PMCID: PMC6018208 DOI: 10.3389/fcimb.2018.00199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 05/28/2018] [Indexed: 02/05/2023] Open
Abstract
In eukaryotic cells, the life cycle of mRNA molecules is modulated in response to environmental signals and cell-cell communication in order to support cellular homeostasis. Capping, splicing and polyadenylation in the nucleus lead to the formation of transcripts that are suitable for translation in cytoplasm, until mRNA decay occurs in P-bodies. Although pre-mRNA processing and degradation mechanisms have usually been studied separately, they occur simultaneously and in a coordinated manner through protein-protein interactions, maintaining the integrity of gene expression. In the past few years, the availability of the genome sequence of Entamoeba histolytica, the protozoan parasite responsible for human amoebiasis, coupled to the development of the so-called “omics” technologies provided new opportunities for the study of mRNA processing and turnover in this pathogen. Here, we review the current knowledge about the molecular basis for splicing, 3′ end formation and mRNA degradation in amoeba, which suggest the conservation of events related to mRNA life throughout evolution. We also present the functional characterization of some key proteins and describe some interactions that indicate the relevance of cooperative regulatory events for gene expression in this human parasite.
Collapse
Affiliation(s)
- Jesús Valdés-Flores
- Departamento de Bioquímica, CINVESTAV, Ciudad de Mexico, Mexico City, Mexico
| | - Itzel López-Rosas
- CONACyT Research Fellow - Colegio de Postgraduados Campus Campeche, Campeche, Mexico
| | - César López-Camarillo
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México Ciudad de Mexico, Mexico City, Mexico
| | - Esther Ramírez-Moreno
- Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional Ciudad de Mexico, Mexico City, Mexico
| | - Juan D Ospina-Villa
- Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional Ciudad de Mexico, Mexico City, Mexico
| | - Laurence A Marchat
- Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional Ciudad de Mexico, Mexico City, Mexico
| |
Collapse
|
8
|
Ospina-Villa JD, Guillén N, Lopez-Camarillo C, Soto-Sanchez J, Ramirez-Moreno E, Garcia-Vazquez R, Castañon-Sanchez CA, Betanzos A, Marchat LA. Silencing the cleavage factor CFIm25 as a new strategy to control Entamoeba histolytica parasite. J Microbiol 2017; 55:783-791. [PMID: 28956353 DOI: 10.1007/s12275-017-7259-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 08/16/2017] [Accepted: 08/19/2017] [Indexed: 01/28/2023]
Abstract
The 25 kDa subunit of the Clevage Factor Im (CFIm25) is an essential factor for messenger RNA polyadenylation in human cells. Therefore, here we investigated whether the homologous protein of Entamoeba histolytica, the protozoan responsible for human amoebiasis, might be considered as a biochemical target for parasite control. Trophozoites were cultured with bacterial double-stranded RNA molecules targeting the EhCFIm25 gene, and inhibition of mRNA and protein expression was confirmed by RT-PCR and Western blot assays, respectively. EhCFIm25 silencing was associated with a significant acceleration of cell proliferation and cell death. Moreover, trophozoites appeared as larger and multinucleated cells. These morphological changes were accompanied by a reduced mobility, and erythrophagocytosis was significantly diminished. Lastly, the knockdown of EhCFIm25 affected the poly(A) site selection in two reporter genes and revealed that EhCFIm25 stimulates the utilization of downstream poly(A) sites in E. histolytica mRNA. Overall, our data confirm that targeting the polyadenylation process represents an interesting strategy for controlling parasites, including E. histolytica. To our best knowledge, the present study is the first to have revealed the relevance of the cleavage factor CFIm25 as a biochemical target in parasites.
Collapse
Affiliation(s)
| | - Nancy Guillén
- Institut Pasteur, Unité d'Analyses d'Images Biologiques, Paris, France
| | - Cesar Lopez-Camarillo
- Universidad Autónoma de la Ciudad de México - Posgrado en Ciencias Genómicas, Ciudad de México, Mexico
| | | | | | | | | | - Abigail Betanzos
- Cátedras, CONACYT, Departamento de Infectómica y Patogénesis Molecular, CINVESTAV-IPN, Ciudad de México, Mexico
| | | |
Collapse
|
9
|
Soto-Castro L, Plata-Guzmán LY, Figueroa-Angulo EE, Calla-Choque JS, Reyes-López M, de la Garza M, León-Sicairos N, Garzón-Tiznado JA, Arroyo R, León-Sicairos C. Iron responsive-like elements in the parasite Entamoeba histolytica. Microbiology (Reading) 2017; 163:1329-1342. [DOI: 10.1099/mic.0.000431] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Liliana Soto-Castro
- Programa Regional del Noroeste para el Posgrado en Biotecnología de la Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Av. de las Américas y Josefa Ortíz (Cd. Universitaria) Culiacán, Sinaloa 80030, Mexico
| | - Laura Yuliana Plata-Guzmán
- Programa Regional del Noroeste para el Posgrado en Biotecnología de la Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Av. de las Américas y Josefa Ortíz (Cd. Universitaria) Culiacán, Sinaloa 80030, Mexico
| | - Elisa Elvira Figueroa-Angulo
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Avenida Instituto Politécnico Nacional No. 2508, Colonia San Pedro Zacatenco, México, D.F. 07360, Mexico
| | - Jaeson Santos Calla-Choque
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Avenida Instituto Politécnico Nacional No. 2508, Colonia San Pedro Zacatenco, México, D.F. 07360, Mexico
| | - Magda Reyes-López
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Avenida Instituto Politécnico Nacional No. 2508, Colonia San Pedro Zacatenco, México D.F. 07360, Mexico
| | - Mireya de la Garza
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Avenida Instituto Politécnico Nacional No. 2508, Colonia San Pedro Zacatenco, México D.F. 07360, Mexico
| | - Nidia León-Sicairos
- Programa Regional del Noroeste para el Posgrado en Biotecnología de la Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Av. de las Américas y Josefa Ortíz (Cd. Universitaria) Culiacán, Sinaloa 80030, Mexico
| | - José Antonio Garzón-Tiznado
- Programa Regional del Noroeste para el Posgrado en Biotecnología de la Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Av. de las Américas y Josefa Ortíz (Cd. Universitaria) Culiacán, Sinaloa 80030, Mexico
| | - Rossana Arroyo
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Avenida Instituto Politécnico Nacional No. 2508, Colonia San Pedro Zacatenco, México, D.F. 07360, Mexico
| | - Claudia León-Sicairos
- Programa Regional del Noroeste para el Posgrado en Biotecnología de la Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Av. de las Américas y Josefa Ortíz (Cd. Universitaria) Culiacán, Sinaloa 80030, Mexico
| |
Collapse
|
10
|
Untranslated regions of mRNA and their role in regulation of gene expression in protozoan parasites. J Biosci 2017; 42:189-207. [PMID: 28229978 DOI: 10.1007/s12038-016-9660-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Protozoan parasites are one of the oldest living entities in this world that throughout their existence have shown excellent resilience to the odds of survival and have adapted beautifully to ever changing rigors of the environment. In view of the dynamic environment encountered by them throughout their life cycle, and in establishing pathogenesis, it is unsurprising that modulation of gene expression plays a fundamental role in their survival. In higher eukaryotes, untranslated regions (UTRs) of transcripts are one of the crucial regulators of gene expression (influencing mRNA stability and translation efficiency). Parasitic protozoan genome studies have led to the characterization (in silico, in vitro and in vivo) of a large number of their genes. Comparison of higher eukaryotic UTRs with parasitic protozoan UTRs reveals the existence of several similar and dissimilar facets of the UTRs. This review focuses on the elements of UTRs of medically important protozoan parasites and their regulatory role in gene expression. Such information may be useful to researchers in designing gene targeting strategies linked with perturbation of host-parasite relationships leading to control of specific parasites.
Collapse
|
11
|
Manna D, Ehrenkaufer GM, Singh U. Regulation of gene expression in the protozoan parasite Entamoeba invadens: identification of core promoter elements and promoters with stage-specific expression patterns. Int J Parasitol 2014; 44:837-45. [PMID: 25075445 DOI: 10.1016/j.ijpara.2014.06.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 06/25/2014] [Accepted: 06/25/2014] [Indexed: 02/04/2023]
Abstract
Developmental switching between life-cycle stages is a common feature among many pathogenic organisms. Entamoeba histolytica is an important human pathogen and is a leading parasitic cause of death globally. During its life cycle, Entamoeba converts between cysts (essential for disease transmission) and trophozoites (responsible for tissue invasion). Despite being central to its biology, the triggers that are involved in the developmental pathways of this parasite are not well understood. In order to define the transcriptional network associated with stage conversion we used Entamoeba invadens which serves as a model system for Entamoeba developmental biology, and performed RNA sequencing at different developmental time points. In this study RNA-Seq data was utilised to define basal transcriptional control elements as well as to identify promoters which regulate stage-specific gene expression patterns. We discovered that the 5' and 3' untranslated regions of E. invadens genes are short, a median of 20 nucleotides (nt) and 26 nt respectively. Bioinformatics analysis of DNA sequences proximate to the start and stop codons identified two conserved motifs: (i) E. invadens Core Promoter Motif - GAAC-Like (EiCPM-GL) (GAACTACAAA), and (ii) E. invadens 3'-U-Rich Motif (Ei3'-URM) (TTTGTT) in the 5' and 3' flanking regions, respectively. Electrophoretic mobility shift assays demonstrated that both motifs specifically bind nuclear protein(s) from E. invadens trophozoites. Additionally, we identified select genes with stage-specific expression patterns and analysed the ability of each gene promoter to drive a luciferase reporter gene during the developmental cycle. This approach confirmed three trophozoite-specific, four encystation-specific and two excystation-specific promoters. This work lays the framework for use of stage-specific promoters to express proteins of interest in a particular life-cycle stage, adding to the molecular toolbox for genetic manipulation of E. invadens and allowing further dissection of factors controlling Entamoeba developmental biology.
Collapse
Affiliation(s)
- Dipak Manna
- Division of Infectious Diseases, Department of Internal Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA
| | - Gretchen M Ehrenkaufer
- Division of Infectious Diseases, Department of Internal Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA
| | - Upinder Singh
- Division of Infectious Diseases, Department of Internal Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA.
| |
Collapse
|
12
|
López-Camarillo C, López-Rosas I, Ospina-Villa JD, Marchat LA. Deciphering molecular mechanisms of mRNA metabolism in the deep-branching eukaryoteEntamoeba histolytica. WILEY INTERDISCIPLINARY REVIEWS-RNA 2013; 5:247-62. [DOI: 10.1002/wrna.1205] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 10/04/2013] [Accepted: 10/09/2013] [Indexed: 11/05/2022]
Affiliation(s)
| | - Itzel López-Rosas
- Genomics Sciences Program; Autonomous University of Mexico City; Mexico City Mexico
| | - Juan David Ospina-Villa
- Institutional Program of Molecular Biomedicine; National School of Medicine and Homeopathy of the National Polytechnic Institute; Mexico City Mexico
| | - Laurence A. Marchat
- Institutional Program of Molecular Biomedicine; National School of Medicine and Homeopathy of the National Polytechnic Institute; Mexico City Mexico
- Biotechnology Program; National School of Medicine and Homeopathy of the National Polytechnic Institute; Mexico City Mexico
| |
Collapse
|
13
|
Li XQ, Du D. RNA polyadenylation sites on the genomes of microorganisms, animals, and plants. PLoS One 2013; 8:e79511. [PMID: 24260238 PMCID: PMC3832601 DOI: 10.1371/journal.pone.0079511] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 09/29/2013] [Indexed: 01/15/2023] Open
Abstract
Pre–messenger RNA (mRNA) 3′-end cleavage and subsequent polyadenylation strongly regulate gene expression. In comparison with the upstream or downstream motifs, relatively little is known about the feature differences of polyadenylation [poly(A)] sites among major kingdoms. We suspect that the precise poly(A) sites are very selective, and we therefore mapped mRNA poly(A) sites on complete and nearly complete genomes using mRNA sequences available in the National Center for Biotechnology Information (NCBI) Nucleotide database. In this paper, we describe the mRNA nucleotide [i.e., the poly(A) tail attachment position] that is directly in attachment with the poly(A) tail and the pre-mRNA nucleotide [i.e., the poly(A) tail starting position] that corresponds to the first adenosine of the poly(A) tail in the 29 most-mapped species (2 fungi, 2 protists, 18 animals, and 7 plants). The most representative pre-mRNA dinucleotides covering these two positions were UA, CA, and GA in 17, 10, and 2 of the species, respectively. The pre-mRNA nucleotide at the poly(A) tail starting position was typically an adenosine [i.e., A-type poly(A) sites], sometimes a uridine, and occasionally a cytidine or guanosine. The order was U>C>G at the attachment position but A>>U>C≥G at the starting position. However, in comparison with the mRNA nucleotide composition (base composition), the poly(A) tail attachment position selected C over U in plants and both C and G over U in animals, in both A-type and non-A-type poly(A) sites. Animals, dicot plants, and monocot plants had clear differences in C/G ratios at the poly(A) tail attachment position of the non-A-type poly(A) sites. This study of poly(A) site evolution indicated that the two positions within poly(A) sites had distinct nucleotide compositions and were different among kingdoms.
Collapse
Affiliation(s)
- Xiu-Qing Li
- Molecular Genetics Laboratory, Potato Research Centre, Agriculture and Agri-Food Canada, Fredericton, New Brunswick, Canada
- * E-mail:
| | - Donglei Du
- Quantitative Methods Research Group, Faculty of Business Administration, University of New Brunswick, Fredericton, New Brunswick, Canada
| |
Collapse
|
14
|
Pezet-Valdez M, Fernández-Retana J, Ospina-Villa JD, Ramírez-Moreno ME, Orozco E, Charcas-López S, Soto-Sánchez J, Mendoza-Hernández G, López-Casamicha M, López-Camarillo C, Marchat LA. The 25 kDa subunit of cleavage factor Im Is a RNA-binding protein that interacts with the poly(A) polymerase in Entamoeba histolytica. PLoS One 2013; 8:e67977. [PMID: 23840799 PMCID: PMC3695940 DOI: 10.1371/journal.pone.0067977] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Accepted: 05/23/2013] [Indexed: 01/03/2023] Open
Abstract
In eukaryotes, polyadenylation of pre-mRNA 3´ end is essential for mRNA export, stability and translation. Taking advantage of the knowledge of genomic sequences of Entamoeba histolytica, the protozoan responsible for human amoebiasis, we previously reported the putative polyadenylation machinery of this parasite. Here, we focused on the predicted protein that has the molecular features of the 25 kDa subunit of the Cleavage Factor Im (CFIm25) from other organisms, including the Nudix (nucleoside diphosphate linked to another moiety X) domain, as well as the RNA binding domain and the PAP/PAB interacting region. The recombinant EhCFIm25 protein (rEhCFIm25) was expressed in bacteria and used to generate specific antibodies in rabbit. Subcellular localization assays showed the presence of the endogenous protein in nuclear and cytoplasmic fractions. In RNA electrophoretic mobility shift assays, rEhCFIm25 was able to form specific RNA-protein complexes with the EhPgp5 mRNA 3´ UTR used as probe. In addition, Pull-Down and LC/ESI-MS/MS tandem mass spectrometry assays evidenced that the putative EhCFIm25 was able to interact with the poly(A) polymerase (EhPAP) that is responsible for the synthesis of the poly(A) tail in other eukaryotic cells. By Far-Western experiments, we confirmed the interaction between the putative EhCFIm25 and EhPAP in E. histolytica. Taken altogether, our results showed that the putative EhCFIm25 is a conserved RNA binding protein that interacts with the poly(A) polymerase, another member of the pre-mRNA 3´ end processing machinery in this protozoan parasite.
Collapse
Affiliation(s)
- Marisol Pezet-Valdez
- Programa Institucional de Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía del IPN, Guillermo Massieu Helguera #239, Fracc. La Escalera, Ticomán, México D.F., Mexico
| | - Jorge Fernández-Retana
- Programa Institucional de Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía del IPN, Guillermo Massieu Helguera #239, Fracc. La Escalera, Ticomán, México D.F., Mexico
| | - Juan David Ospina-Villa
- Programa Institucional de Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía del IPN, Guillermo Massieu Helguera #239, Fracc. La Escalera, Ticomán, México D.F., Mexico
| | - María Esther Ramírez-Moreno
- Programa Institucional de Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía del IPN, Guillermo Massieu Helguera #239, Fracc. La Escalera, Ticomán, México D.F., Mexico
- Doctorado en Biotecnología en Red, Escuela Nacional de Medicina y Homeopatía del IPN, Guillermo Massieu Helguera #239, Fracc. La Escalera, Ticomán, México D.F., Mexico
| | - Esther Orozco
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional, México D.F., Mexico
| | - Socorro Charcas-López
- Programa Institucional de Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía del IPN, Guillermo Massieu Helguera #239, Fracc. La Escalera, Ticomán, México D.F., Mexico
| | - Jacqueline Soto-Sánchez
- Programa Institucional de Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía del IPN, Guillermo Massieu Helguera #239, Fracc. La Escalera, Ticomán, México D.F., Mexico
| | - Guillermo Mendoza-Hernández
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, México D.F., Mexico
| | - Mavil López-Casamicha
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, México D.F., Mexico
| | - César López-Camarillo
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, México D.F., Mexico
| | - Laurence A. Marchat
- Programa Institucional de Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía del IPN, Guillermo Massieu Helguera #239, Fracc. La Escalera, Ticomán, México D.F., Mexico
- Doctorado en Biotecnología en Red, Escuela Nacional de Medicina y Homeopatía del IPN, Guillermo Massieu Helguera #239, Fracc. La Escalera, Ticomán, México D.F., Mexico
- * E-mail:
| |
Collapse
|
15
|
Hernandes-Alejandro M, Calixto-Gálvez M, López-Reyes I, Salas-Casas A, Cázares-Ápatiga J, Orozco E, Rodríguez MA. The small GTPase EhRabB of Entamoeba histolytica is differentially expressed during phagocytosis. Parasitol Res 2013; 112:1631-40. [DOI: 10.1007/s00436-013-3318-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 01/23/2013] [Indexed: 01/30/2023]
|
16
|
Hon CC, Weber C, Sismeiro O, Proux C, Koutero M, Deloger M, Das S, Agrahari M, Dillies MA, Jagla B, Coppee JY, Bhattacharya A, Guillen N. Quantification of stochastic noise of splicing and polyadenylation in Entamoeba histolytica. Nucleic Acids Res 2012; 41:1936-52. [PMID: 23258700 PMCID: PMC3561952 DOI: 10.1093/nar/gks1271] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Alternative splicing and polyadenylation were observed pervasively in eukaryotic messenger RNAs. These alternative isoforms could either be consequences of physiological regulation or stochastic noise of RNA processing. To quantify the extent of stochastic noise in splicing and polyadenylation, we analyzed the alternative usage of splicing and polyadenylation sites in Entamoeba histolytica using RNA-Seq. First, we identified a large number of rarely spliced alternative junctions and then showed that the occurrence of these alternative splicing events is correlated with splicing site sequence, occurrence of constitutive splicing events and messenger RNA abundance. Our results implied the majority of these alternative splicing events are likely to be stochastic error of splicing machineries, and we estimated the corresponding error rates. Second, we observed extensive microheterogeneity of polyadenylation cleavage sites, and the extent of such microheterogeneity is correlated with the occurrence of constitutive cleavage events, suggesting most of such microheterogeneity is likely to be stochastic. Overall, we only observed a small fraction of alternative splicing and polyadenylation isoforms that are unlikely to be solely stochastic, implying the functional relevance of alternative splicing and polyadenylation in E. histolytica is limited. Lastly, we revised the gene models and annotated their 3′UTR in AmoebaDB, providing valuable resources to the community.
Collapse
Affiliation(s)
- Chung-Chau Hon
- Institut Pasteur, Unité Biologie Cellulaire du Parasitisme, Département Biologie cellulaire et infection, F-75015 Paris, France, INSERM U786, F-75015 Paris, France.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Clayton C, Michaeli S. 3' processing in protists. WILEY INTERDISCIPLINARY REVIEWS-RNA 2010; 2:247-55. [PMID: 21957009 DOI: 10.1002/wrna.49] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Molecular biologists have traditionally focused on the very small corner of eukaryotic evolution that includes yeast and animals; even plants have been neglected. In this article, we describe the scant information that is available concerning RNA processing in the other four major eukaryotic groups, especially pathogenic protists. We focus mainly on polyadenylation and nuclear processing of stable RNAs. These processes have--where examined--been shown to be conserved, but there are many novel details. We also briefly mention other processing reactions such as splicing.
Collapse
Affiliation(s)
- Christine Clayton
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, Heidelberg, Germany.
| | | |
Collapse
|
18
|
Shrimal S, Bhattacharya S, Bhattacharya A. Serum-dependent selective expression of EhTMKB1-9, a member of Entamoeba histolytica B1 family of transmembrane kinases. PLoS Pathog 2010; 6:e1000929. [PMID: 20532220 PMCID: PMC2880585 DOI: 10.1371/journal.ppat.1000929] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Accepted: 04/28/2010] [Indexed: 11/29/2022] Open
Abstract
Entamoeba histolytica transmembrane kinases (EhTMKs) can be grouped into six distinct families on the basis of motifs and sequences. Analysis of the E. histolytica genome revealed the presence of 35 EhTMKB1 members on the basis of sequence identity (≥95%). Only six homologs were full length containing an extracellular domain, a transmembrane segment and an intracellular kinase domain. Reverse transcription followed by polymerase chain reaction (RT-PCR) of the kinase domain was used to generate a library of expressed sequences. Sequencing of randomly picked clones from this library revealed that about 95% of the clones were identical with a single member, EhTMKB1-9, in proliferating cells. On serum starvation, the relative number of EhTMKB1-9 derived sequences decreased with concomitant increase in the sequences derived from another member, EhTMKB1-18. The change in their relative expression was quantified by real time PCR. Northern analysis and RNase protection assay were used to study the temporal nature of EhTMKB1-9 expression after serum replenishment of starved cells. The results showed that the expression of EhTMKB1-9 was sinusoidal. Specific transcriptional induction of EhTMKB1-9 upon serum replenishment was further confirmed by reporter gene (luciferase) expression and the upstream sequence responsible for serum responsiveness was identified. EhTMKB1-9 is one of the first examples of an inducible gene in Entamoeba. The protein encoded by this member was functionally characterized. The recombinant kinase domain of EhTMKB1-9 displayed protein kinase activity. It is likely to have dual specificity as judged from its sensitivity to different kinase inhibitors. Immuno-localization showed EhTMKB1-9 to be a surface protein which decreased on serum starvation and got relocalized on serum replenishment. Cell lines expressing either EhTMKB1-9 without kinase domain, or EhTMKB1-9 antisense RNA, showed decreased cellular proliferation and target cell killing. Our results suggest that E. histolytica TMKs of B1 family are functional kinases likely to be involved in serum response and cellular proliferation. The presence of a vast array of putative transmembrane kinase genes suggests an extensive network of signaling systems in E. histolytica, particularly the ability to perceive signals from the extracellular environment and transduce these intracellularly. However, it has been very difficult to work with these molecules due to the presence of a large number of homologs. It is also not clear if these molecules are indeed protein kinases, as no kinase activity has yet been shown associated with these molecules. In this report, we show that EhTMKB1-9 is a protein kinase and it is one of the early serum-induced genes. It is a predominant EhTMKB1 molecule that is expressed in proliferating cells and its expression is modulated by serum. Cells containing a reduced level of EhTMKB1-9 or high level of a mutant protein result in decreased proliferation, target cell killing and adherence. The results presented in this report suggest that EhTMKB1-9 is an important signaling molecule likely to be involved in E. histolytica proliferation and virulence. We have also identified a serum starvation induced response where expression of EhTMKB1-18 was found to be induced.
Collapse
Affiliation(s)
- Shiteshu Shrimal
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sudha Bhattacharya
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Alok Bhattacharya
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
- School of Information Technology, Jawaharlal Nehru University, New Delhi, India
- * E-mail:
| |
Collapse
|
19
|
Regulation of gene expression in protozoa parasites. J Biomed Biotechnol 2010; 2010:726045. [PMID: 20204171 PMCID: PMC2830571 DOI: 10.1155/2010/726045] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 11/10/2009] [Accepted: 01/08/2010] [Indexed: 12/25/2022] Open
Abstract
Infections with protozoa parasites are associated with high burdens of morbidity and mortality across the developing world. Despite extensive efforts to control the transmission of these parasites, the spread of populations resistant to drugs and the lack of effective vaccines against them contribute to their persistence as major public health problems. Parasites should perform a strict control on the expression of genes involved in their pathogenicity, differentiation, immune evasion, or drug resistance, and the comprehension of the mechanisms implicated in that control could help to develop novel therapeutic strategies. However, until now these mechanisms are poorly understood in protozoa. Recent investigations into gene expression in protozoa parasites suggest that they possess many of the canonical machineries employed by higher eukaryotes for the control of gene expression at transcriptional, posttranscriptional, and epigenetic levels, but they also contain exclusive mechanisms. Here, we review the current understanding about the regulation of gene expression in Plasmodium sp., Trypanosomatids, Entamoeba histolytica and Trichomonas vaginalis.
Collapse
|