1
|
Milocco A, Scuor N, Lughi V, Lamberti G, Barba AA, Divittorio R, Grassi G, Perkan A, Grassi M, Abrami M. Thermal gelation modeling of a pluronic‐alginate blend following coronary angioplasty. J Appl Polym Sci 2020. [DOI: 10.1002/app.48539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Alessio Milocco
- Department of Engineering and ArchitectureTrieste University, via Valerio 6, I‐34127 Trieste Italy
| | - Nicola Scuor
- Department of Engineering and ArchitectureTrieste University, via Valerio 6, I‐34127 Trieste Italy
| | - Vanni Lughi
- Department of Engineering and ArchitectureTrieste University, via Valerio 6, I‐34127 Trieste Italy
| | - Gaetano Lamberti
- Department of Industrial EngineeringUniversity of Salerno, Via Giovanni Paolo II, 132, I‐84084 Fisciano SA Italy
| | - Anna Angela Barba
- Department of PharmacySalerno University, Via Giovanni Paolo II, 132, I‐84084 Fisciano SA Italy
| | - Rosario Divittorio
- Department of Engineering and ArchitectureTrieste University, via Valerio 6, I‐34127 Trieste Italy
| | - Gabriele Grassi
- Department of Life SciencesCattinara University Hospital, Trieste University, Strada di Fiume 447, I‐34149 Trieste Italy
| | - Andrea Perkan
- Struttura Complessa di Cardiologia, Azienda per l'Assistenza Sanitaria n. 1 Triestina, Cattinara Hospital, Strada di Fiume 447, I‐34149 Trieste Italy
| | - Mario Grassi
- Department of Engineering and ArchitectureTrieste University, via Valerio 6, I‐34127 Trieste Italy
| | - Michela Abrami
- Department of Engineering and ArchitectureTrieste University, via Valerio 6, I‐34127 Trieste Italy
| |
Collapse
|
2
|
Bigford G, Nash MS. Nutritional Health Considerations for Persons with Spinal Cord Injury. Top Spinal Cord Inj Rehabil 2018; 23:188-206. [PMID: 29339895 DOI: 10.1310/sci2303-188] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Chronic spinal cord injury (SCI) often results in morbidity and mortality due to all-cause cardiovascular disease (CVD) and comorbid endocrine disorders. Several component risk factors for CVD, described as the cardiometabolic syndrome (CMS), are prevalent in SCI, with the individual risks of obesity and insulin resistance known to advance the disease prognosis to a greater extent than other established risks. Notably, adiposity and insulin resistance are attributed in large part to a commonly observed maladaptive dietary/nutritional profile. Although there are no evidence-based nutritional guidelines to address the CMS risk in SCI, contemporary treatment strategies advocate more comprehensive lifestyle management that includes sustained nutritional guidance as a necessary component for overall health management. This monograph describes factors in SCI that contribute to CMS risks, the current nutritional profile and its contribution to CMS risks, and effective treatment strategies including the adaptability of the Diabetes Prevention Program (DPP) to SCI. Establishing appropriate nutritional guidelines and recommendations will play an important role in addressing the CMS risks in SCI and preserving optimal long-term health.
Collapse
Affiliation(s)
- Gregory Bigford
- Department of Neurological Surgery, University of Miami School of Medicine, Miami, Florida.,The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida
| | - Mark S Nash
- Department of Neurological Surgery, University of Miami School of Medicine, Miami, Florida.,Department of Physical Medicine & Rehabilitation, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
3
|
Engineering approaches in siRNA delivery. Int J Pharm 2017; 525:343-358. [PMID: 28213276 DOI: 10.1016/j.ijpharm.2017.02.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 02/10/2017] [Accepted: 02/11/2017] [Indexed: 12/18/2022]
Abstract
siRNAs are very potent drug molecules, able to silence genes involved in pathologies development. siRNAs have virtually an unlimited therapeutic potential, particularly for the treatment of inflammatory diseases. However, their use in clinical practice is limited because of their unfavorable properties to interact and not to degrade in physiological environments. In particular they are large macromolecules, negatively charged, which undergo rapid degradation by plasmatic enzymes, are subject to fast renal clearance/hepatic sequestration, and can hardly cross cellular membranes. These aspects seriously impair siRNAs as therapeutics. As in all the other fields of science, siRNAs management can be advantaged by physical-mathematical descriptions (modeling) in order to clarify the involved phenomena from the preparative step of dosage systems to the description of drug-body interactions, which allows improving the design of delivery systems/processes/therapies. This review analyzes a few mathematical modeling approaches currently adopted to describe the siRNAs delivery, the main procedures in siRNAs vectors' production processes and siRNAs vectors' release from hydrogels, and the modeling of pharmacokinetics of siRNAs vectors. Furthermore, the use of physical models to study the siRNAs vectors' fate in blood stream and in the tissues is presented. The general view depicts a framework maybe not yet usable in therapeutics, but with promising possibilities for forthcoming applications.
Collapse
|
4
|
Simon L, Ospina J. Three-dimensional analyses of a perforated cylindrical drug delivery device. Int J Pharm 2015; 481:64-70. [DOI: 10.1016/j.ijpharm.2015.01.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 12/27/2014] [Accepted: 01/24/2015] [Indexed: 11/28/2022]
|
5
|
Weiser JR, Saltzman WM. Controlled release for local delivery of drugs: barriers and models. J Control Release 2014; 190:664-73. [PMID: 24801251 PMCID: PMC4142083 DOI: 10.1016/j.jconrel.2014.04.048] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 04/15/2014] [Accepted: 04/25/2014] [Indexed: 01/14/2023]
Abstract
Controlled release systems are an effective means for local drug delivery. In local drug delivery, the major goal is to supply therapeutic levels of a drug agent at a physical site in the body for a prolonged period. A second goal is to reduce systemic toxicities, by avoiding the delivery of agents to non-target tissues remote from the site. Understanding the dynamics of drug transport in the vicinity of a local drug delivery device is helpful in achieving both of these goals. Here, we provide an overview of controlled release systems for local delivery and we review mathematical models of drug transport in tissue, which describe the local penetration of drugs into tissue and illustrate the factors - such as diffusion, convection, and elimination - that control drug dispersion and its ultimate fate. This review highlights the important role of controlled release science in development of reliable methods for local delivery, as well as the barriers to accomplishing effective delivery in the brain, blood vessels, mucosal epithelia, and the skin.
Collapse
Affiliation(s)
- Jennifer R Weiser
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06511, USA.
| | - W Mark Saltzman
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06511, USA.
| |
Collapse
|
6
|
Grassi M, Grassi G. Application of mathematical modeling in sustained release delivery systems. Expert Opin Drug Deliv 2014; 11:1299-321. [PMID: 24938598 DOI: 10.1517/17425247.2014.924497] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION This review, presenting as starting point the concept of the mathematical modeling, is aimed at the physical and mathematical description of the most important mechanisms regulating drug delivery from matrix systems. The precise knowledge of the delivery mechanisms allows us to set up powerful mathematical models which, in turn, are essential for the design and optimization of appropriate drug delivery systems. AREAS COVERED The fundamental mechanisms for drug delivery from matrices are represented by drug diffusion, matrix swelling, matrix erosion, drug dissolution with possible recrystallization (e.g., as in the case of amorphous and nanocrystalline drugs), initial drug distribution inside the matrix, matrix geometry, matrix size distribution (in the case of spherical matrices of different diameter) and osmotic pressure. Depending on matrix characteristics, the above-reported variables may play a different role in drug delivery; thus the mathematical model needs to be built solely on the most relevant mechanisms of the particular matrix considered. EXPERT OPINION Despite the somewhat diffident behavior of the industrial world, in the light of the most recent findings, we believe that mathematical modeling may have a tremendous potential impact in the pharmaceutical field. We do believe that mathematical modeling will be more and more important in the future especially in the light of the rapid advent of personalized medicine, a novel therapeutic approach intended to treat each single patient instead of the 'average' patient.
Collapse
Affiliation(s)
- Mario Grassi
- University of Trieste, Department of Engineering and Architecture , Via Valerio 6/A, I - 34127, Trieste , Italy +39 040 558 3435 ; +39 040 569823 ;
| | | |
Collapse
|
7
|
Abrami M, D'Agostino I, Milcovich G, Fiorentino S, Farra R, Asaro F, Lapasin R, Grassi G, Grassi M. Physical characterization of alginate-Pluronic F127 gel for endoluminal NABDs delivery. SOFT MATTER 2014; 10:729-737. [PMID: 24651920 DOI: 10.1039/c3sm51873f] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Here we focus the attention on the physical characteristics of a highly biocompatible hydrogel made up of crosslinked alginate and Pluronic F127 (PF127). This is a composite polymeric blend we propose for artery endoluminal delivery of an emerging class of molecules named nucleic acid based drugs (NABDs). The physical characterization of our composite gel, i.e. mesh size distribution and PF127-alginate mutual organization after crosslinking, can significantly determine the NABDs release kinetics. Thus, to explore these aspects, different technical approaches, i.e. rheology, low/high field NMR and TEM, were used. While rheology provided information at the macroscopic and nano-level, the other three approaches gave details at the nano-level. We observe that Pluronic micelles, organizing in cubic ordered domains, generate, upon alginate crosslinking, the formation of meshes (≈ 150 nm) larger than those occurring in a Pluronic-free alginate network (≈ 25 nm). Nevertheless, smaller alginate meshes are still on and can just host un-structured Pluronic micelles and water. Accordingly, the gel structure is quite inhomogeneous, where big meshes (filled by crystalline Pluronic) co-exist with smaller meshes (hosting water and un-structured PF127 micelles). While big meshes offer a considerable hindering action on a diffusing solute, smaller ones represent a sort of free space where solute diffusion is faster. The presence of big and small meshes indicates that drug release may follow a double kinetics characterized by a fast and slow release. Notably, this behavior is considered appropriate for endoluminal drug release to the arterial wall.
Collapse
Affiliation(s)
- Michela Abrami
- Department of Engineering and Architecture, University of Trieste, Via Alfonso Valerio, 6/A, I-34127 Trieste, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Mathematical modeling of simultaneous drug release and in vivo absorption. Int J Pharm 2011; 418:130-41. [DOI: 10.1016/j.ijpharm.2010.12.044] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Revised: 12/22/2010] [Accepted: 12/27/2010] [Indexed: 01/17/2023]
|
9
|
Drug release from coronary eluting stents: A multidomain approach. J Biomech 2010; 43:1580-9. [DOI: 10.1016/j.jbiomech.2010.01.033] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Revised: 11/17/2009] [Accepted: 01/03/2010] [Indexed: 11/23/2022]
|
10
|
Barba AA, d'Amore M, Grassi M, Chirico S, Lamberti G, Titomanlio G. Investigation of Pluronic© F127-Water solutions phase transitions by DSC and dielectric spectroscopy. J Appl Polym Sci 2009. [DOI: 10.1002/app.30586] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
11
|
Dapas B, Farra R, Grassi M, Giansante C, Fiotti N, Uxa L, Rainaldi G, Mercatanti A, Colombatti A, Spessotto P, Lacovich V, Guarnieri G, Grassi G. Role of E2F1-cyclin E1-cyclin E2 circuit in human coronary smooth muscle cell proliferation and therapeutic potential of its downregulation by siRNAs. Mol Med 2009; 15:297-306. [PMID: 19603101 DOI: 10.2119/molmed.2009.00030] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Accepted: 06/25/2009] [Indexed: 12/31/2022] Open
Abstract
Aberrant coronary vascular smooth muscle cell (CSMC) proliferation is a pivotal event underlying intimal hyperplasia, a phenomenon impairing the long-term efficacy of bypass surgery and angioplasty procedures. Consequently research has become focused on efforts to identify molecules that are able to control CSMC proliferation. We investigated downregulation of CSMC growth by small interfering RNAs (siRNAs) targeted against E2F1, cyclin E1, and cyclin E2 genes, whose contribution to CSMC proliferation is only now being recognized. Chemically synthesized siRNAs were delivered by two different transfection reagents to asynchronous and synchronous growing human CSMCs cultivated either in normo- or hyperglycemic conditions. The depletion of each of the three target genes affected the expression of the other two genes, demonstrating a close regulatory control. The clearest effects associated with the inhibition of the E2F1-cyclin E1/E2 circuit were the reduction in the phosphorylation levels of the retinoblastoma protein pRB and a decrease in the amount of cyclin A2. At the phenotypic level the downmodulation of CSMC proliferation resulted in a decrease of S phase matched by an increase of G1-G0 phase cell amounts. The antiproliferative effect was cell-donor and transfectant independent, reversible, and effective in asynchronous and synchronous growing CSMCs. Importantly, it was also evident in hyperglycemia, a condition that underlies diabetes. No significant aspecific cytotoxicity was observed. Our data demonstrate the interrelation among E2F1-cyclin E1-cyclin E2 and the pivotal role this circuit exerts in CSMC proliferation. Additionally, our work validates the concept of utilizing anti-E2F1-cyclin E1-cyclin E2 siRNAs to develop a potential novel therapy to control intimal hyperplasia.
Collapse
Affiliation(s)
- Barbara Dapas
- Department of Clinical, Morphological and Technological Sciences, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|