1
|
He X, Zhao L, Tian Y, Li R, Chu Q, Gu Z, Zheng M, Wang Y, Li S, Jiang H, Jiang Y, Wen L, Wang D, Cheng X. Highly accurate carbohydrate-binding site prediction with DeepGlycanSite. Nat Commun 2024; 15:5163. [PMID: 38886381 PMCID: PMC11183243 DOI: 10.1038/s41467-024-49516-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 06/10/2024] [Indexed: 06/20/2024] Open
Abstract
As the most abundant organic substances in nature, carbohydrates are essential for life. Understanding how carbohydrates regulate proteins in the physiological and pathological processes presents opportunities to address crucial biological problems and develop new therapeutics. However, the diversity and complexity of carbohydrates pose a challenge in experimentally identifying the sites where carbohydrates bind to and act on proteins. Here, we introduce a deep learning model, DeepGlycanSite, capable of accurately predicting carbohydrate-binding sites on a given protein structure. Incorporating geometric and evolutionary features of proteins into a deep equivariant graph neural network with the transformer architecture, DeepGlycanSite remarkably outperforms previous state-of-the-art methods and effectively predicts binding sites for diverse carbohydrates. Integrating with a mutagenesis study, DeepGlycanSite reveals the guanosine-5'-diphosphate-sugar-recognition site of an important G-protein coupled receptor. These findings demonstrate DeepGlycanSite is invaluable for carbohydrate-binding site prediction and could provide insights into molecular mechanisms underlying carbohydrate-regulation of therapeutically important proteins.
Collapse
Affiliation(s)
- Xinheng He
- State Key Laboratory of Drug Research and State Key Laboratory of Chemical Biology, Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lifen Zhao
- State Key Laboratory of Drug Research and State Key Laboratory of Chemical Biology, Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yinping Tian
- State Key Laboratory of Drug Research and State Key Laboratory of Chemical Biology, Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Rui Li
- State Key Laboratory of Drug Research and State Key Laboratory of Chemical Biology, Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Qinyu Chu
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou, China
| | - Zhiyong Gu
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou, China
| | - Mingyue Zheng
- State Key Laboratory of Drug Research and State Key Laboratory of Chemical Biology, Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou, China
| | - Yusong Wang
- National Key Laboratory of Human-Machine Hybrid Augmented Intelligence, National Engineering Research Center for Visual Information and Applications, and Institute of Artificial Intelligence and Robotics, Xi'an Jiaotong University, Xi'an, China
| | - Shaoning Li
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong, China
| | - Hualiang Jiang
- State Key Laboratory of Drug Research and State Key Laboratory of Chemical Biology, Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou, China
- Lingang Laboratory, Shanghai, China
| | - Yi Jiang
- Lingang Laboratory, Shanghai, China
| | - Liuqing Wen
- State Key Laboratory of Drug Research and State Key Laboratory of Chemical Biology, Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | | | - Xi Cheng
- State Key Laboratory of Drug Research and State Key Laboratory of Chemical Biology, Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou, China.
| |
Collapse
|
2
|
Abstract
Glycoscience assembles all the scientific disciplines involved in studying various molecules and macromolecules containing carbohydrates and complex glycans. Such an ensemble involves one of the most extensive sets of molecules in quantity and occurrence since they occur in all microorganisms and higher organisms. Once the compositions and sequences of these molecules are established, the determination of their three-dimensional structural and dynamical features is a step toward understanding the molecular basis underlying their properties and functions. The range of the relevant computational methods capable of addressing such issues is anchored by the specificity of stereoelectronic effects from quantum chemistry to mesoscale modeling throughout molecular dynamics and mechanics and coarse-grained and docking calculations. The Review leads the reader through the detailed presentations of the applications of computational modeling. The illustrations cover carbohydrate-carbohydrate interactions, glycolipids, and N- and O-linked glycans, emphasizing their role in SARS-CoV-2. The presentation continues with the structure of polysaccharides in solution and solid-state and lipopolysaccharides in membranes. The full range of protein-carbohydrate interactions is presented, as exemplified by carbohydrate-active enzymes, transporters, lectins, antibodies, and glycosaminoglycan binding proteins. A final section features a list of 150 tools and databases to help address the many issues of structural glycobioinformatics.
Collapse
Affiliation(s)
- Serge Perez
- Centre de Recherche sur les Macromolecules Vegetales, University of Grenoble-Alpes, Centre National de la Recherche Scientifique, Grenoble F-38041, France
| | - Olga Makshakova
- FRC Kazan Scientific Center of Russian Academy of Sciences, Kazan Institute of Biochemistry and Biophysics, Kazan 420111, Russia
| |
Collapse
|
3
|
Grossman AS, Escobar CA, Mans EJ, Mucci NC, Mauer TJ, Jones KA, Moore CC, Abraham PE, Hettich RL, Schneider L, Campagna SR, Forest KT, Goodrich-Blair H. A Surface Exposed, Two-Domain Lipoprotein Cargo of a Type XI Secretion System Promotes Colonization of Host Intestinal Epithelia Expressing Glycans. Front Microbiol 2022; 13:800366. [PMID: 35572647 PMCID: PMC9100927 DOI: 10.3389/fmicb.2022.800366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/07/2022] [Indexed: 11/17/2022] Open
Abstract
The only known required component of the newly described Type XI secretion system (TXISS) is an outer membrane protein (OMP) of the DUF560 family. TXISSOMPs are broadly distributed across proteobacteria, but properties of the cargo proteins they secrete are largely unexplored. We report biophysical, histochemical, and phenotypic evidence that Xenorhabdus nematophila NilC is surface exposed. Biophysical data and structure predictions indicate that NilC is a two-domain protein with a C-terminal, 8-stranded β-barrel. This structure has been noted as a common feature of TXISS effectors and may be important for interactions with the TXISSOMP. The NilC N-terminal domain is more enigmatic, but our results indicate it is ordered and forms a β-sheet structure, and bioinformatics suggest structural similarities to carbohydrate-binding proteins. X. nematophila NilC and its presumptive TXISSOMP partner NilB are required for colonizing the anterior intestine of Steinernema carpocapsae nematodes: the receptacle of free-living, infective juveniles and the anterior intestinal cecum (AIC) in juveniles and adults. We show that, in adult nematodes, the AIC expresses a Wheat Germ Agglutinin (WGA)-reactive material, indicating the presence of N-acetylglucosamine or N-acetylneuraminic acid sugars on the AIC surface. A role for this material in colonization is supported by the fact that exogenous addition of WGA can inhibit AIC colonization by X. nematophila. Conversely, the addition of exogenous purified NilC increases the frequency with which X. nematophila is observed at the AIC, demonstrating that abundant extracellular NilC can enhance colonization. NilC may facilitate X. nematophila adherence to the nematode intestinal surface by binding to host glycans, it might support X. nematophila nutrition by cleaving sugars from the host surface, or it might help protect X. nematophila from nematode host immunity. Proteomic and metabolomic analyses of wild type X. nematophila compared to those lacking nilB and nilC revealed differences in cell wall and secreted polysaccharide metabolic pathways. Additionally, purified NilC is capable of binding peptidoglycan, suggesting that periplasmic NilC may interact with the bacterial cell wall. Overall, these findings support a model that NilB-regulated surface exposure of NilC mediates interactions between X. nematophila and host surface glycans during colonization. This is a previously unknown function for a TXISS.
Collapse
Affiliation(s)
- Alex S. Grossman
- Department of Microbiology, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Cristian A. Escobar
- Department of Bacteriology, The University of Wisconsin–Madison, Madison, WI, United States
| | - Erin J. Mans
- Department of Microbiology, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Nicholas C. Mucci
- Department of Microbiology, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Terra J. Mauer
- Department of Bacteriology, The University of Wisconsin–Madison, Madison, WI, United States
| | - Katarina A. Jones
- Department of Chemistry, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Cameron C. Moore
- Department of Microbiology, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Paul E. Abraham
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Robert L. Hettich
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Liesel Schneider
- Department of Animal Sciences, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Shawn R. Campagna
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Biological and Small Molecule Mass Spectrometry Core, The University of Tennessee, Knoxville, Knoxville, TN, United States
- The University of Tennessee Oak Ridge Innovation Institute, Knoxville, TN, United States
| | - Katrina T. Forest
- Department of Bacteriology, The University of Wisconsin–Madison, Madison, WI, United States
- Katrina T. Forest,
| | - Heidi Goodrich-Blair
- Department of Microbiology, The University of Tennessee, Knoxville, Knoxville, TN, United States
- Department of Bacteriology, The University of Wisconsin–Madison, Madison, WI, United States
- *Correspondence: Heidi Goodrich-Blair,
| |
Collapse
|
4
|
Saeed A, Rafiq Z, Imran M, Saeed Q, Saeed MQ, Ali Z, Iqbal RK, Hussain S, Khaliq B, Mehmood S, Akrem A. In-silico Studies Calculated a New Chitin Oligomer Binding Site Inside Vicilin: A Potent Antifungal and Insecticidal Agent. Dose Response 2022; 20:15593258221108280. [PMID: 35734395 PMCID: PMC9208065 DOI: 10.1177/15593258221108280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/01/2022] [Indexed: 11/20/2022] Open
Abstract
Vicilins are major seed storage proteins and show differential binding affinities toward sugar moieties of fungal cell wall and insect gut epithelium. Hence, purpose of study is the thorough in-silico characterization of interactions between vicilin and chitin oligomer followed by fungal and insecticidal bioassays. This work covers the molecular simulation studies explaining the interactions between Pisum sativum vicilin (PsV) and chitin oligomer followed by protein bioassay against different pathogens. LC-MS/MS of purified PsV (∼50 kDa) generated residual data along high pea vicilin homology (UniProtKB ID; P13918). Predicted model (PsV) indicated the characteristic homotrimer joined through head-to-tail association and each monomer is containing a bicupin domain. PsV site map analysis showed a new site (Site 4) into which molecular docking confirmed the strong binding of chitin oligomer (GlcNAc)4. Molecular dynamics simulation data (50 ns) indicated that chitin-binding site was comprised of 8 residues (DKEDRNEN). However, aspartate and glutamate significantly contributed in the stability of ligand binding. Computational findings were further verified via significant growth inhibition of Aspergillus flavus, A. niger, and Fusarium oxysporum against PsV. Additionally, the substantial adult population of Brevicoryne brassicae was reduced and different life stages of Tribolium castaneum also showed significant mortality.
Collapse
Affiliation(s)
- Ahsan Saeed
- Botany Division, Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan, Pakistan
| | - Zahra Rafiq
- Botany Division, Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammad Imran
- Forman Christian College (A Chartered University), Lahore, Pakistan
| | - Qamar Saeed
- Department of Entomology, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammad Q Saeed
- Department of Microbiology, Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan, Pakistan
| | - Zahid Ali
- Department of Biosciences, Plant Biotechnology and Molecular Pharming Lab, COMSATS University, Islamabad, Pakistan
| | - Rana K Iqbal
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | - Saber Hussain
- Botany Division, Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan, Pakistan
| | - Binish Khaliq
- Department of Botany, University of Okara, Okara, Pakistan
| | - Sohaib Mehmood
- Botany Division, Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan, Pakistan
| | - Ahmed Akrem
- Botany Division, Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan, Pakistan
| |
Collapse
|
5
|
PCA-MutPred: Prediction of binding free energy change upon missense mutation in protein-carbohydrate complexes. J Mol Biol 2022; 434:167526. [DOI: 10.1016/j.jmb.2022.167526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/26/2022] [Accepted: 03/01/2022] [Indexed: 11/22/2022]
|
6
|
Liu S, Kou Y, Chen L. Novel Few-Shot Learning Neural Network for Predicting Carbohydrate-Active Enzyme Affinity Toward Fructo-Oligosaccharides. J Comput Biol 2021; 28:1208-1218. [PMID: 34898254 DOI: 10.1089/cmb.2021.0091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The enzymatic activity of the microbiome toward carbohydrates in the human digestive system is of enormous health significance. Predicting how carbohydrates through food intake may affect the distribution and balance of gut microbiota remains a major challenge. Understanding the enzyme/substrate specificity relationship of the carbohydrate-active enzyme (CAZyme) encoded by the vast gut microbiome will be an important step to address this question. In this study, we seek to establish an in silico approach to studying the enzyme/substrate binding interaction. We focused on the key CAZyme and established a novel Poisson noise-based few-shot learning neural network (pFSLNN) for predicting the binding affinity of indigestible carbohydrates. This approach achieved higher accuracy than other classic FSLNNs, and we have also formulated new algorithms for feature generation using only a few amino acid (AA) sequences. Sliding bin regression is integrated with minimum redundancy maximum relevance for feature selection. The resulting pFSLNN is an efficient model to predict the binding affinity between CAZyme and common oligosaccharides. This model can be potentially applied to the binding affinity prediction of other protein/ligand interactions based on limited AA sequences.
Collapse
Affiliation(s)
- Shaoxun Liu
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Yi Kou
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Lin Chen
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
7
|
Godehard SP, Müller H, Badenhorst CPS, Stanetty C, Suster C, Mihovilovic MD, Bornscheuer UT. Efficient Acylation of Sugars and Oligosaccharides in Aqueous Environment Using Engineered Acyltransferases. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00048] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Simon P. Godehard
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17487 Greifswald, Germany
| | - Henrik Müller
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17487 Greifswald, Germany
| | - Christoffel P. S. Badenhorst
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17487 Greifswald, Germany
| | - Christian Stanetty
- Institute for Applied Synthetic Chemistry, TU Wien, A-1060 Vienna, Austria
| | - Christoph Suster
- Institute for Applied Synthetic Chemistry, TU Wien, A-1060 Vienna, Austria
| | | | - Uwe T. Bornscheuer
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17487 Greifswald, Germany
| |
Collapse
|
8
|
Miranda MRA, Uchôa AF, Ferreira SR, Ventury KE, Costa EP, Carmo PRL, Machado OLT, Fernandes KVS, Amancio Oliveira AE. Chemical Modifications of Vicilins Interfere with Chitin-Binding Affinity and Toxicity to Callosobruchus maculatus (Coleoptera: Chrysomelidae) Insect: A Combined In Vitro and In Silico Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:5596-5605. [PMID: 32343573 DOI: 10.1021/acs.jafc.9b08034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Vicilins are related to cowpea seed resistance toward Callosobruchus maculatus due to their ability to bind to chitinous structures lining larval midgut. However, this binding mechanism is not fully understood. Here, we identified chitin binding sites and investigated how in vitro and in silico chemical modifications interfere with vicilin chitin binding and insect toxicity. In vitro assays showed that unmodified vicilin strongly binds to chitin matrices, mainly with acetylated chitin. Chemical modifications of specific amino acids (tryptophan, lysine, tyrosine), as well as glutaraldehyde cross-linking, decreased the evaluated parameters. In silico analyses identified at least one chitin binding site in vicilin monomer, the region between Arg208 and Lys216, which bears the sequence REGIRELMK and forms an α helix, exposed in the 3D structure. In silico modifications of Lys223 (acetylated at its terminal nitrogen) and Trp316 (iodinated to 7-iodine-L-tryptophan or oxidized to β-oxy-indolylalanine) decreased vicilin chitin binding affinity. Glucose, sucrose, and N-acetylglucosamine also interfered with vicilin chitin binding affinity.
Collapse
Affiliation(s)
- Maria Raquel A Miranda
- Departamento de Bioquímica, Centro de Ciências, Universidade Federal do Ceará (UFC), Fortaleza Ceará 60440554, Brazil
| | - Adriana F Uchôa
- Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte 59072970, Brazil
| | - Sarah R Ferreira
- Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, Rio de Janeiro 28013-602, Brazil
| | - Kayan E Ventury
- Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, Rio de Janeiro 28013-602, Brazil
| | - Evenilton P Costa
- Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, Rio de Janeiro 28013-602, Brazil
| | - Paulo R Leitão Carmo
- NUPEN, Universidade Federal do Rio de Janeiro (UFRJ) Macaé, Rio de Janeiro 27965-045, Brazil
| | - Olga L T Machado
- Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, Rio de Janeiro 28013-602, Brazil
| | - Katia V S Fernandes
- Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, Rio de Janeiro 28013-602, Brazil
| | - Antonia Elenir Amancio Oliveira
- Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, Rio de Janeiro 28013-602, Brazil
| |
Collapse
|
9
|
Structural and Functional Studies of a Klebsiella Phage Capsule Depolymerase Tailspike: Mechanistic Insights into Capsular Degradation. Structure 2020; 28:613-624.e4. [PMID: 32386574 DOI: 10.1016/j.str.2020.04.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/09/2020] [Accepted: 04/17/2020] [Indexed: 01/01/2023]
Abstract
Capsule polysaccharide is a major virulence factor of Klebsiella pneumoniae, a nosocomial pathogen associated with a wide range of infections. It protects bacteria from harsh environmental conditions, immune system response, and phage infection. To access cell wall-located receptors, some phages possess tailspike depolymerases that degrade the capsular polysaccharide. Here, we present the crystal structure of a tailspike against Klebsiella, KP32gp38, whose primary sequence shares no similarity to other proteins of known structure. In the trimeric structure of KP32gp38, each chain contains a flexible N-terminal domain, a right-handed parallel β helix domain and two β sandwiches with carbohydrate binding features. The crystal structure and activity assays allowed us to locate the catalytic site. Also, our data provide experimental evidence of a branching architecture of depolymerases in KP32 Klebsiella viruses, as KP32gp38 displays nanomolar affinity to another depolymerase from the same phage, KP32gp37. Results provide a structural framework for enzyme engineering to produce serotype-broad-active enzyme complexes against K. pneumoniae.
Collapse
|
10
|
Shastry DG, Irudayanathan FJ, Williams A, Koffas M, Linhardt RJ, Nangia S, Karande P. Rational identification and characterisation of peptide ligands for targeting polysialic acid. Sci Rep 2020; 10:7697. [PMID: 32376914 PMCID: PMC7203153 DOI: 10.1038/s41598-020-64088-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 04/08/2020] [Indexed: 11/09/2022] Open
Abstract
The alpha-2,8-linked form of the polysaccharide polysialic acid (PSA) has widespread implications in physiological and pathological processes, ranging from neurological development to disease progression. Though the high electronegativity and excluded volume of PSA often promotes interference of biomolecular interactions, PSA-binding ligands have important implications for both biological processes and biotechnological applications. As such, the design, identification, and characterisation of novel ligands towards PSA is critical for expanding knowledge of PSA interactions and achieving selective glycan targeting. Here, we report on a rational approach for the identification of alpha-2,8-PSA-binding peptides, involving design from the endogenous ligand Siglec-11 and multi-platform characterisation of peptide binding. Microarray-based examination of peptides revealed charge and sequence characteristics influencing peptide affinity to PSA, and carbohydrate-peptide binding was further quantified with a novel fluorescence anisotropy assay. PSA-binding peptides exhibited specific binding to polymeric SA, as well as different degrees of selective binding in various conditions, including competition with PSA of alternating 2,8/9-linkages and screening with PSA-expressing cells. A computational study of Siglec-11 and Siglec-11-derived peptides offered synergistic insight into ligand binding. These results demonstrate the potential of PSA-binding peptides for selective targeting and highlight the importance of the approaches described herein for the study of carbohydrate interactions.
Collapse
Affiliation(s)
- Divya G Shastry
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA. .,Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
| | | | - Asher Williams
- Howard P. Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Mattheos Koffas
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.,Howard P. Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Robert J Linhardt
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.,Howard P. Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.,Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.,Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Shikha Nangia
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY, 13244, USA
| | - Pankaj Karande
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA. .,Howard P. Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
| |
Collapse
|
11
|
Copoiu L, Torres PHM, Ascher DB, Blundell TL, Malhotra S. ProCarbDB: a database of carbohydrate-binding proteins. Nucleic Acids Res 2020; 48:D368-D375. [PMID: 31598690 PMCID: PMC6943041 DOI: 10.1093/nar/gkz860] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/12/2019] [Accepted: 10/05/2019] [Indexed: 02/02/2023] Open
Abstract
Carbohydrate-binding proteins play crucial roles across all organisms and viruses. The complexity of carbohydrate structures, together with inconsistencies in how their 3D structures are reported, has led to difficulties in characterizing the protein-carbohydrate interfaces. In order to better understand protein-carbohydrate interactions, we have developed an open-access database, ProCarbDB, which, unlike the Protein Data Bank (PDB), clearly distinguishes between the complete carbohydrate ligands and their monomeric units. ProCarbDB is a comprehensive database containing over 5200 3D X-ray crystal structures of protein-carbohydrate complexes. In ProCarbDB, the complete carbohydrate ligands are annotated and all their interactions are displayed. Users can also select any protein residue in the proximity of the ligand to inspect its interactions with the carbohydrate ligand and with other neighbouring protein residues. Where available, additional curated information on the binding affinity of the complex and the effects of mutations on the binding have also been provided in the database. We believe that ProCarbDB will be an invaluable resource for understanding protein-carbohydrate interfaces. The ProCarbDB web server is freely available at http://www.procarbdb.science/procarb.
Collapse
Affiliation(s)
- Liviu Copoiu
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Pedro H M Torres
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, UK
| | - David B Ascher
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, UK,Department of Biochemistry, University of Melbourne, Flemington Road, Parkville, Australia
| | - Tom L Blundell
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, UK,To whom correspondence should be addressed. Tel: +44 1223 333628;
| | - Sony Malhotra
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, UK,Correspondence may also be addressed to Sony Malhotra.
| |
Collapse
|