1
|
Li C, Zhou J, Du G, Chen J, Takahashi S, Liu S. Developing Aspergillus niger as a cell factory for food enzyme production. Biotechnol Adv 2020; 44:107630. [PMID: 32919011 DOI: 10.1016/j.biotechadv.2020.107630] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 09/05/2020] [Accepted: 09/05/2020] [Indexed: 02/06/2023]
Abstract
Aspergillus niger has become one of the most important hosts for food enzyme production due to its unique food safety characteristics and excellent protein secretion systems. A series of food enzymes such as glucoamylase have been commercially produced by A. niger strains, making this species a suitable platform for the engineered of strains with improved enzyme production. However, difficulties in genetic manipulations and shortage of expression strategies limit the progress in this regard. Moreover, several mycotoxins have recently been detected in some A. niger strains, which raises the necessity for a regulatory approval process for food enzyme production. With robust strains, processing engineering strategies are also needed for producing the enzymes on a large scale, which is also challenging for A. niger, since its culture is aerobic, and non-Newtonian fluid properties are developed during submerged culture, making mixing and aeration very energy-intensive. In this article, the progress and challenges of developing A. niger for the production of food enzymes are reviewed, including its genetic manipulations, strategies for more efficient production of food enzymes, and elimination of mycotoxins for product safety.
Collapse
Affiliation(s)
- Cen Li
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| | - Jingwen Zhou
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| | - Guocheng Du
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| | - Jian Chen
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| | - Shunji Takahashi
- Natural Product Biosynthesis Research Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| | - Song Liu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
2
|
Gusev Y, Mazilov S, Volokhina I, Chumakov M. Agrobacterial, Single-Stranded DNA-Binding Protein VirE2 and Its Complexes. J Comput Biol 2019; 27:675-682. [PMID: 31486677 DOI: 10.1089/cmb.2019.0243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
VirE2 from Agrobacterium tumefaciens is a single-stranded (ss) DNA-binding protein involved in delivery of ssT-DNA (single-stranded transfer DNA) from the agrobacterial Ti plasmid into the eukaryotic cell nucleus. The crystallized part of VirE2 was studied by X-ray diffraction, and the noncrystallized parts of the C- (40 amino acid residues [aars]) and N- (111 aars) termini of the protein, which are presumably disordered, were evaluated by computational methods. We did a molecular dynamics simulation of VirE2 without VirE1 and observed no large changes in domain orientation. The interaction of VirE2 with ssDNA and formation of ssDNA-VirE2 complexes in silico were studied. We also used computer-aided methods to design model complexes consisting from two- and four-subunit VirE2 proteins. We examined the implication of disordered sites in formation of two- and four-subunit VirE2 complexes. Formation of VirE2 dimers and tetramers within ssDNA-VirE2 complexes was demonstrated by computational methods. Using the Platinum program, we found that hydrophilic amino acids were predominant on the surface of the four-subunit VirE2 complex.
Collapse
Affiliation(s)
- Yury Gusev
- Bioengineering Laboratory, Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Saratov, Russia
| | - Svyatoslav Mazilov
- Bioengineering Laboratory, Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Saratov, Russia
| | - Irina Volokhina
- Bioengineering Laboratory, Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Saratov, Russia
| | - Mikhail Chumakov
- Bioengineering Laboratory, Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Saratov, Russia
| |
Collapse
|