1
|
Moura DMD, Carvalho AMRS, Brito RCFD, Roatt BM, Lage DP, Martins VT, Cruz LDR, Medeiros FAC, Batista SD, Pinheiro GRG, da Costa Rocha MO, Coelho EAF, Duarte MC, Mendes TADO, Menezes-Souza D. CD4 + and CD8 + T-cell multi-epitope chimeric protein associated with an MPLA adjuvant induce protective efficacy and long-term immunological memory for the immunoprophylaxis of American Tegumentary Leishmaniasis. Vaccine 2024; 42:126178. [PMID: 39096765 DOI: 10.1016/j.vaccine.2024.126178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/05/2024]
Abstract
American Tegumentary Leishmaniasis (ATL) is a disease of high severity and incidence in Brazil, in addition to being a worldwide concern in public health. Leishmania amazonensis is one of the etiological agents of ATL, and the inefficiency of control measures, associated with the high toxicity of the treatment and the lack of effective immunoprophylactic strategies, makes the development of vaccines indispensable and imminent. In this light, the present study proposes to elaborate a chimeric protein (rChiP), based on the fusion of multiple epitopes of CD4+/CD8+ T cells, identified in the immunoproteome of the parasites L. amazonensis and L. braziliensis. The designed chimeric protein was tested in the L. amazonensis murine model of infection using the following formulations: 25 μg of the rChiP in saline (rChiP group) and 25 μg of the rChiP plus 25 μg of MPLA-PHAD® (rChiP+MPLA group). After completing immunization, CD4+ and CD8+ T cells, stimulated with SLa-Antigen or rChiP, showed an increased production of nitric oxide and intracytoplasmic pro-inflammatory cytokines, in addition to the generation of central and effector memory T cells. rChiP and rChiP+MPLA formulations were able to promote an effective protection against L. amazonensis infection determined by a reduction in the development of skin lesions and lower parasitic burden. Reduction in the development of skin lesions and lower parasitic burden in the vaccinated groups were associated with an increase of nitrite, CD4+/CD8+IFN-γ+TNF-α+ and CD4+/CD8+CD44highCD62Lhigh/low T cells, IgGTotal, IgG2a, and lower rates of IgG1 and CD4+/CD8+IL-10+. This data suggests that proposed formulations could be considered potential tools to prevent ATL.
Collapse
Affiliation(s)
- Dênia Monteiro de Moura
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Minas Gerais, Brazil
| | - Ana Maria Ravena Severino Carvalho
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Minas Gerais, Brazil
| | - Rory Cristiane Fortes de Brito
- Núcleo de Pesquisas em Ciências Biológicas/NUPEB, Universidade Federal de Ouro Preto, Ouro Preto 35400-000, Minas Gerais, Brazil
| | - Bruno Mendes Roatt
- Núcleo de Pesquisas em Ciências Biológicas/NUPEB, Universidade Federal de Ouro Preto, Ouro Preto 35400-000, Minas Gerais, Brazil
| | - Daniela Pagliara Lage
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Minas Gerais, Brazil
| | - Vivian Tamietti Martins
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Minas Gerais, Brazil
| | - Luiza Dos Reis Cruz
- Laboratório de Química Orgânica Sintética, Instituto de Química, Universidade Estadual de Campinas, Campinas, 13083-970 São Paulo, Brazil
| | - Fernanda Alvarenga Cardoso Medeiros
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Minas Gerais, Brazil
| | - Sarah Dutra Batista
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Minas Gerais, Brazil
| | - Guilherme Rafael Gomide Pinheiro
- Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | - Manoel Otávio da Costa Rocha
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Minas Gerais, Brazil
| | - Eduardo Antonio Ferraz Coelho
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Minas Gerais, Brazil; Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | - Mariana Costa Duarte
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Minas Gerais, Brazil; Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | | | - Daniel Menezes-Souza
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Minas Gerais, Brazil; Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil; Programa de Pós-Graduação em Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil.
| |
Collapse
|
2
|
Dehghani A, Mamizadeh M, Karimi A, Hosseini SA, Siamian D, Shams M, Ghiabi S, Basati G, Abaszadeh A. Multi-epitope vaccine design against leishmaniasis using IFN-γ inducing epitopes from immunodominant gp46 and gp63 proteins. J Genet Eng Biotechnol 2024; 22:100355. [PMID: 38494264 PMCID: PMC10860880 DOI: 10.1016/j.jgeb.2024.100355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 01/24/2024] [Indexed: 03/19/2024]
Abstract
There is no currently approved human vaccine against leishmaniasis. Utilization of immunogenic antigens and their epitopes capable of enhancing immune responses against leishmaniasis is a crucial step for rational in silico vaccine design. The objective of this study was to generate and evaluate a potential vaccine candidate against leishmaniasis, designed by immunodominant proteins from gp46 and gp63 of Leishmania major, which can stimulate helper T-lymphocytes (HTL) and cytotoxic T-lymphocytes (CTL). For this aim, the IFN-γ-inducing MHC-I and MHC-II binders were predicted for each examined protein (gp46 and gp63) and connected with appropriate linkers, along with an adjuvant (Mycobacterium tuberculosis L7/L12) and a histidine tag. The vaccine's stability, antigenicity, structure, and interaction with the TLR-4 receptor were evaluated in silico. The resulting chimeric vaccine was composed of 344 amino acids and had a molecular weight of 35.64 kDa. Physico-chemical properties indicated that it was thermotolerant, soluble, highly antigenic, and non-allergenic. Predictions of the secondary and tertiary structures were made, and further analyses confirmed that the vaccine construct could interact with the human TLR-4 receptor. Virtual immune simulation demonstrated strong stimulation of T-cell responses, particularly by an increase in IFN-γ, following vaccination. In summary, the in silico data indicated that the vaccine candidate showed high antigenicity in humans. It was also found to trigger significant levels of clearance mechanisms and other components of the cellular immune profile. Nevertheless, further wet experiments are required to properly assess the efficacy of this multi-epitope vaccine candidate against leishmaniasis.
Collapse
Affiliation(s)
- Amir Dehghani
- Department of Nursery, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Mina Mamizadeh
- Department of Dermatology, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran; Zoonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Atena Karimi
- Department of Biology, Faculty of Basic Sciences, Malayer University, Malayer, Iran
| | - Seyyed Amir Hosseini
- Department of Internal Medicine, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Davood Siamian
- Department of Biology, Faculty of Basic Science, Islamic Azad University, Tonekabon Branch, Mazandaran, Iran
| | - Morteza Shams
- Zoonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam, Iran.
| | - Shadan Ghiabi
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Gholam Basati
- Department of Biochemistry, Ilam University of Medical Sciences, Ilam, Iran
| | - Amir Abaszadeh
- Zoonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam, Iran; School of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| |
Collapse
|
3
|
Basmenj ER, Arastonejad M, Mamizadeh M, Alem M, KhalatbariLimaki M, Ghiabi S, Khamesipour A, Majidiani H, Shams M, Irannejad H. Engineering and design of promising T-cell-based multi-epitope vaccine candidates against leishmaniasis. Sci Rep 2023; 13:19421. [PMID: 37940672 PMCID: PMC10632461 DOI: 10.1038/s41598-023-46408-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/31/2023] [Indexed: 11/10/2023] Open
Abstract
Cutaneous leishmaniasis (CL) is a very common parasitic infection in subtropical areas worldwide. Throughout decades, there have been challenges in vaccine design and vaccination against CL. The present study introduced novel T-cell-based vaccine candidates containing IFN-γ Inducing epitopic fragments from Leishmania major (L. major) glycoprotein 46 (gp46), cathepsin L-like and B-like proteases, histone H2A, glucose-regulated protein 78 (grp78) and stress-inducible protein 1 (STI-1). For this aim, top-ranked human leukocyte antigen (HLA)-specific, IFN-γ Inducing, antigenic, CD4+ and CD8+ binders were highlighted. Four vaccine candidates were generated using different spacers (AAY, GPGPG, GDGDG) and adjuvants (RS-09 peptide, human IFN-γ, a combination of both, Mycobacterium tuberculosis Resuscitation promoting factor E (RpfE)). Based on the immune simulation profile, those with RS-09 peptide (Leish-App) and RpfE (Leish-Rpf) elicited robust immune responses and their tertiary structure were further refined. Also, molecular docking of the selected vaccine models with the human toll-like receptor 4 showed proper interactions, particularly for Leish-App, for which molecular dynamics simulations showed a stable connection with TLR-4. Upon codon optimization, both models were finally ligated into the pET28a( +) vector. In conclusion, two potent multi-epitope vaccine candidates were designed against CL and evaluated using comprehensive in silico methods, while further wet experiments are, also, recommended.
Collapse
Affiliation(s)
| | - Mahshid Arastonejad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - Mina Mamizadeh
- Department of Dermatology, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran
- Zoonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Mahsa Alem
- Department of Microbiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Mahdi KhalatbariLimaki
- Department of Pharmaceutical Sciences, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| | - Shadan Ghiabi
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ali Khamesipour
- Center for Research and Training in Skin Diseases and Leprosy, Tehran University of Medical Sciences, Tehran, 14155-6383, Iran
| | - Hamidreza Majidiani
- Healthy Aging Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran.
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| | - Morteza Shams
- Zoonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam, Iran.
| | - Hamid Irannejad
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
- Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
4
|
Mohammadzadeh Hosseini Moghri SAH, Mahmoodi Chalbatani G, Ranjbar M, Raposo C, Abbasian A. CD171 Multi-epitope peptide design based on immuno-informatics approach as a cancer vaccine candidate for glioblastoma. J Biomol Struct Dyn 2023; 41:1028-1040. [PMID: 36617427 DOI: 10.1080/07391102.2021.2020166] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Glioblastoma (GB) is a common primary malignancy of the central nervous system, and one of the highly lethal brain tumors. GB cells can promote therapeutic resistance and tumor angiogenesis. The CD171 is an adhesion molecule in neuronal cells that is expressed in glioma cells as a regulator of brain development during the embryonic period. CD171 is one of the immunoglobulin-like CAMs (cell adhesion molecules) families that can be associated with prognosis in a variety of human tumors. The multi-epitope peptide vaccines are based on synthetic peptides with a combination of both B-cell epitopes and T-cell epitopes, which can induce specific humoral or cellular immune responses. Moreover, Cholera toxin subunit B (CTB), a novel TLR agonist was utilized in the final construct to polarize CD4+ T cells toward T-helper 1 to induce strong cytotoxic T lymphocytes (CTL) responses. In the present study, several immune-informatics tools were used for analyzing the CD171 sequence and studying the important characteristics of a designed vaccine. The results included molecular docking, molecular dynamics simulation, immune response simulation, prediction and validation of the secondary and tertiary structure, physicochemical properties, solubility, conservancy, toxicity as well as antigenicity and allergenicity of the promising candidate for a vaccine against CD171. The immuno-informatic analyze suggested 12 predicted multi-epitope peptides, whose construction consists of 582 residues long. Therewith, cloning adaptation of the designed vaccine was performed, and eventually sequence was inserted into pET30a (+) vector for the application of the anti-glioblastoma vaccine development.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | | | - Mojtaba Ranjbar
- Faculty of Biotechnology, Department of Microbial Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| | - Catarina Raposo
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Arefeh Abbasian
- Faculty of Basic Sciences, Department of Biology, Semnan University, Semnan, Iran
| |
Collapse
|
5
|
Engineering a multi-epitope vaccine candidate against Leishmania infantum using comprehensive Immunoinformatics methods. Biologia (Bratisl) 2021; 77:277-289. [PMID: 34866641 PMCID: PMC8628819 DOI: 10.1007/s11756-021-00934-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/09/2021] [Indexed: 10/31/2022]
Abstract
Visceral leishmaniasis (VL) is a severe disease with particular endemicity in over 80 countries worldwide. There is no approved human vaccine against VL in the market. This study was aimed at designing and evaluation of a multimeric vaccine candidate against Leishmania infantum through utilization of helper T lymphocyte (HTL) and cytotoxic T lymphocyte (CTL) immunodominant proteins from histone H1, KMP11, LACK and LeIF antigens. Top-ranked mouse MHC-I, MHC-II binders and CTL epitopes were predicted and joined together via spacers. Also, a TLR-4 agonist (RS-09 synthetic protein) and His-tag were added to the N- and C-terminal of the vaccine sequence, respectively. The final chimeric vaccine had a length of 184 amino acids with a molecular weight of 18.99 kDa. Physico-chemical features showed a soluble, highly-antigenic and non-allergenic candidate. Secondary and tertiary structures were predicted, and subsequent analyses confirmed the construct stability that was capable to properly interact with TLR-4/MD2 receptor. Immunoinformatics simulation displayed potent stimulation of T cell immune responses, with particular rise in IFN-γ, upon vaccination with the proposed multi-epitope candidate. In conclusion, immunoinformatics data demonstrated a highly antigenic vaccine candidate in mouse, which could develop considerable levels clearance mechanisms and other components of cellular immune profile, and can be directed for VL prophylactic purposes. Supplementary Information The online version contains supplementary material available at 10.1007/s11756-021-00934-3.
Collapse
|
6
|
Li Y, Zhu Y, Sha T, Chen Z, Yu M, Zhang F, Ding J. A Multi-Epitope Chitosan Nanoparticles Vaccine of Canine Against Echinococcus granulosus. J Biomed Nanotechnol 2021; 17:910-920. [PMID: 34082876 DOI: 10.1166/jbn.2021.3065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Cystic Echinococcosis (CE) is caused by Echinococcus granulosus (Eg), which endangers the health of the intermediate host. Therefore, effective canid vaccines against Eg infection are urgently needed to reduce the incidence of this disease. In the present work, the aim was to predict epitopes in four vaccine candidate antigens (VCAs) in Eg as a basis to design a multi-epitope canine-directed vaccine. This vaccine is based on chitosan nanoparticles (CS-NPs) and is directed against Eg infection in the definitive host. The canine-directed vaccine was designed based on Eg antigens EgM9, Eg_10196, EgA31 and EgG1Y162. Several tools in online servers were used to predict VCAs information, which was combined with B cell, CTL and Th epitopes. Considering that acquiring experimental information in canids is difficult, and that it may be possible to perform future experiments in mice, we predicted both canine and murine T cell epitopes. The multi-epitope vaccine was synthetically prepared by ionic crosslinking method, and CS-NPs was used as adjuvant. The mice were immunized by oral gavage and laser scanning confocal microscopy was used to localize the fluorescein- labeled multi-epitope peptide in the intestinal tract. The final multi-epitope vaccine was construct consist of Co1 targeting peptide, four B-cell epitopes, four canine-directed CTL epitopes and four murine-directed Th epitopes. It has been proven experimentally by this research that multi-epitope antigen concentration merged with microfold cells was high in the CS-NPs vaccine group. The present bioinformatics study is a first step towards the construction of a canine-specific multiepitope vaccine against Eg with twelve predicted epitopes. CS-NPs is a potential adjuvant with relatively safe penetration enhancement delivery and a potent immunostimulant.
Collapse
Affiliation(s)
- Yujiao Li
- School of Public Health, Xinjiang Medical University, Xinjiang 830011, PR China
| | - Yuejie Zhu
- Department of Blood Transfusion, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang 830011, PR China
| | - Tong Sha
- Department of Immunology, College of Basic Medicine, Xinjiang Medical University, Xinjiang 830011, PR China
| | - Zhiqiang Chen
- Department of Immunology, College of Basic Medicine, Xinjiang Medical University, Xinjiang 830011, PR China
| | - Mingkai Yu
- Department of Immunology, College of Basic Medicine, Xinjiang Medical University, Xinjiang 830011, PR China
| | - Fengbo Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang 830011, PR China
| | - Jianbing Ding
- Department of Immunology, College of Basic Medicine, Xinjiang Medical University, Xinjiang 830011, PR China
| |
Collapse
|