1
|
Márquez-Flórez K, Garzón-Alvarado DA, Carda C, Sancho-Tello M. Computational model of articular cartilage regeneration induced by scaffold implantation in vivo. J Theor Biol 2023; 561:111393. [PMID: 36572091 DOI: 10.1016/j.jtbi.2022.111393] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/22/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Computational models allow to explain phenomena that cannot be observed through an animal model, such as the strain and stress states which can highly influence regeneration of the tissue. For this purpose, we have developed a simulation tool to determine the mechanical conditions provided by the polymeric scaffold. The computational model considered the articular cartilage, the subchondral bone, and the scaffold. All materials were modeled as poroelastic, and the cartilage had linear-elastic oriented collagen fibers. This model was able to explain the remodeling process that subchondral bone goes through, and how the scaffold allowed the conditions for cartilage regeneration. These results suggest that the use of scaffolds might lead the cartilaginous tissue growth in vivo by providing a better mechanical environment. Moreover, the developed computational model demonstrated to be useful as a tool prior experimental in vivo studies, by predicting the possible outcome of newly proposed treatments allowing to discard approaches that might not bring good results.
Collapse
Affiliation(s)
- K Márquez-Flórez
- Department of Mechanical and Mechatronic Engineering, Universidad Nacional de Colombia, Bogotá, Colombia; Numerical Methods and Modeling Research Group (GNUM), Universidad Nacional de Colombia, Bogotá, Colombia; Department of Pathology, Faculty of Medicine and Odontology, Universitat de València, Valencia, Spain
| | - D A Garzón-Alvarado
- Department of Mechanical and Mechatronic Engineering, Universidad Nacional de Colombia, Bogotá, Colombia; Numerical Methods and Modeling Research Group (GNUM), Universidad Nacional de Colombia, Bogotá, Colombia; Instituto de Biotecnología, Universidad Nacional de Colombia.
| | - C Carda
- Department of Pathology, Faculty of Medicine and Odontology, Universitat de València, Valencia, Spain; INCLIVA Biomedical Research Institute, Valencia, Spain; Biomedical Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Valencia, Spain
| | - M Sancho-Tello
- Department of Pathology, Faculty of Medicine and Odontology, Universitat de València, Valencia, Spain; INCLIVA Biomedical Research Institute, Valencia, Spain
| |
Collapse
|
2
|
Sadeghian SM, Shapiro FD, Shefelbine SJ. Computational model of endochondral ossification: Simulating growth of a long bone. Bone 2021; 153:116132. [PMID: 34329814 DOI: 10.1016/j.bone.2021.116132] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 05/04/2021] [Accepted: 07/23/2021] [Indexed: 11/24/2022]
Abstract
Mechanical loading is a crucial factor in joint and bone development. Using a computational model, we investigated the role of mechanics on cartilage growth rate, ossification of the secondary center, formation of the growth plate, and overall bone shape. A computational algorithm was developed and implemented into finite element models to simulate the endochondral ossification for symmetric and asymmetric motion in a generic diarthrodial joint. Under asymmetric loading condition the secondary center ossifies asymmetrically leaning toward the external load and results in tilted growth plate. Also the mechanics seems to have greater influence in the early onset of the ossification of the secondary center rather than later progression of the center. While previous models have simulated select stages of skeletal development, our model can simulate growth and ossification during the entirety of post-natal development. Such computational models of skeletal development may provide insight into specific loading conditions that cause bone and joint deformities, and the required timing for rehabilitative repair.
Collapse
Affiliation(s)
- S Mahsa Sadeghian
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA, USA
| | | | - Sandra J Shefelbine
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA, USA; Department of Bioengineering, Northeastern University, Boston, MA, USA.
| |
Collapse
|
3
|
Márquez-Flórez KM, Monaghan JR, Shefelbine SJ, Ramirez-Martínez A, Garzón-Alvarado DA. A computational model for the joint onset and development. J Theor Biol 2018; 454:345-356. [DOI: 10.1016/j.jtbi.2018.04.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 04/05/2018] [Accepted: 04/09/2018] [Indexed: 11/28/2022]
|
4
|
Vaca-González JJ, Moncayo-Donoso M, Guevara JM, Hata Y, Shefelbine SJ, Garzón-Alvarado DA. Mechanobiological modeling of endochondral ossification: an experimental and computational analysis. Biomech Model Mechanobiol 2018; 17:853-875. [DOI: 10.1007/s10237-017-0997-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 12/23/2017] [Indexed: 11/24/2022]
|
5
|
Cellular scale model of growth plate: An in silico model of chondrocyte hypertrophy. J Theor Biol 2017; 428:87-97. [PMID: 28526527 DOI: 10.1016/j.jtbi.2017.05.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 03/14/2017] [Accepted: 05/09/2017] [Indexed: 02/03/2023]
Abstract
The growth plate is the responsible for longitudinal bone growth. It is a cartilaginous structure formed by chondrocytes that are continuously undergoing a differentiation process that starts with a highly proliferative state, followed by cellular hypertrophy, and finally tissue ossification. Within the growth plate chondrocytes display a characteristic columnar organization that potentiates longitudinal growth. Both chondrocyte organization and hypertrophy are highly regulated processes influenced by biochemical and mechanical stimuli. These processes have been studied mainly using in vivo models, although there are few computational approaches focused on the rate of ossification rather than events at cellular level. Here, we developed a model of cellular behavior integrating biochemical and structural factors in a single column of cells in the growth plate. In our model proliferation and hypertrophy were controlled by biochemical regulatory loop formed between Ihh and PTHrP (modeled as a set of reaction-diffusion equations), while cell growth was controlled by mechanical loading. We also examined the effects of static loading. The model reproduced the proliferation and hypertrophy of chondrocytes in organized columns. This model constitutes a first step towards the development of mechanobiological models that can be used to study biochemical interactions during endochondral ossification.
Collapse
|
6
|
O'Connor JK, Zheng XT, Sullivan C, Chuong CM, Wang XL, Li A, Wang Y, Zhang XM, Zhou ZH. Evolution and functional significance of derived sternal ossification patterns in ornithothoracine birds. J Evol Biol 2015; 28:1550-67. [PMID: 26079847 DOI: 10.1111/jeb.12675] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Revised: 06/09/2015] [Accepted: 06/12/2015] [Indexed: 12/24/2022]
Abstract
The midline pattern of sternal ossification characteristic of the Cretaceous enantiornithine birds is unique among the Ornithodira, the group containing birds, nonavian dinosaurs and pterosaurs. This has been suggested to indicate that Enantiornithes is not the sister group of Ornithuromorpha, the clade that includes living birds and their close relatives, which would imply rampant convergence in many nonsternal features between enantiornithines and ornithuromorphs. However, detailed comparisons reveal greater similarity between neornithine (i.e. crown group bird) and enantiornithine modes of sternal ossification than previously recognized. Furthermore, a new subadult enantiornithine specimen demonstrates that sternal ossification followed a more typically ornithodiran pattern in basal members of the clade. This new specimen, referable to the Pengornithidae, indicates that the unique ossification pattern observed in other juvenile enantiornithines is derived within Enantiornithes. A similar but clearly distinct pattern appears to have evolved in parallel in the ornithuromorph lineage. The atypical mode of sternal ossification in some derived enantiornithines should be regarded as an autapomorphic condition rather than an indication that enantiornithines are not close relatives of ornithuromorphs. Based on what is known about molecular mechanisms for morphogenesis and the possible selective advantages, the parallel shifts to midline ossification that took place in derived enantiornithines and living neognathous birds appear to have been related to the development of a large ventral keel, which is only present in ornithuromorphs and enantiornithines. Midline ossification can serve to medially reinforce the sternum at a relatively early ontogenetic stage, which would have been especially beneficial during the protracted development of the superprecocial Cretaceous enantiornithines.
Collapse
Affiliation(s)
- J K O'Connor
- Key Laboratory of Vertebrate Evolution and Human Origins of the Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
| | - X-T Zheng
- Institute of Geology and Paleontology, Linyi University, Linyi, Shandong, China.,Tianyu Natural History Museum of Shandong, Pingyi, Shandong, China
| | - C Sullivan
- Key Laboratory of Vertebrate Evolution and Human Origins of the Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
| | - C-M Chuong
- Department of Pathology, University of Southern California, Los Angeles, CA, USA
| | - X-L Wang
- Institute of Geology and Paleontology, Linyi University, Linyi, Shandong, China.,Tianyu Natural History Museum of Shandong, Pingyi, Shandong, China
| | - A Li
- Department of Pathology, University of Southern California, Los Angeles, CA, USA
| | - Y Wang
- Institute of Geology and Paleontology, Linyi University, Linyi, Shandong, China.,Tianyu Natural History Museum of Shandong, Pingyi, Shandong, China
| | - X-M Zhang
- Tianyu Natural History Museum of Shandong, Pingyi, Shandong, China
| | - Z-H Zhou
- Key Laboratory of Vertebrate Evolution and Human Origins of the Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
Guevara JM, Moncayo MA, Vaca-González JJ, Gutiérrez ML, Barrera LA, Garzón-Alvarado DA. Growth plate stress distribution implications during bone development: a simple framework computational approach. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2015; 118:59-68. [PMID: 25453383 DOI: 10.1016/j.cmpb.2014.10.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 09/22/2014] [Accepted: 10/08/2014] [Indexed: 06/04/2023]
Abstract
Mechanical stimuli play a significant role in the process of long bone development as evidenced by clinical observations and in vivo studies. Up to now approaches to understand stimuli characteristics have been limited to the first stages of epiphyseal development. Furthermore, growth plate mechanical behavior has not been widely studied. In order to better understand mechanical influences on bone growth, we used Carter and Wong biomechanical approximation to analyze growth plate mechanical behavior, and explore stress patterns for different morphological stages of the growth plate. To the best of our knowledge this work is the first attempt to study stress distribution on growth plate during different possible stages of bone development, from gestation to adolescence. Stress distribution analysis on the epiphysis and growth plate was performed using axisymmetric (3D) finite element analysis in a simplified generic epiphyseal geometry using a linear elastic model as the first approximation. We took into account different growth plate locations, morphologies and widths, as well as different epiphyseal developmental stages. We found stress distribution during bone development established osteogenic index patterns that seem to influence locally epiphyseal structures growth and coincide with growth plate histological arrangement.
Collapse
Affiliation(s)
- J M Guevara
- Institute for the Study of Inborn Errors of Metabolism, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - M A Moncayo
- Biomimetics Laboratory and Numerical Methods and Modeling Research Group (GNUM), Instituto de Biotecnología (IBUN), Universidad Nacional de Colombia, Bogotá, Colombia
| | - J J Vaca-González
- Biomimetics Laboratory and Numerical Methods and Modeling Research Group (GNUM), Instituto de Biotecnología (IBUN), Universidad Nacional de Colombia, Bogotá, Colombia
| | - M L Gutiérrez
- Biomimetics Laboratory and Numerical Methods and Modeling Research Group (GNUM), Instituto de Biotecnología (IBUN), Universidad Nacional de Colombia, Bogotá, Colombia
| | - L A Barrera
- Institute for the Study of Inborn Errors of Metabolism, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - D A Garzón-Alvarado
- Biomimetics Laboratory and Numerical Methods and Modeling Research Group (GNUM), Instituto de Biotecnología (IBUN), Universidad Nacional de Colombia, Bogotá, Colombia.
| |
Collapse
|
8
|
Garzón-Alvarado DA, González A, Gutiérrez ML. Growth of the flat bones of the membranous neurocranium: a computational model. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2013; 112:655-664. [PMID: 23981584 DOI: 10.1016/j.cmpb.2013.07.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 07/24/2013] [Accepted: 07/29/2013] [Indexed: 06/02/2023]
Abstract
This article assumes two stages in the formation of the bones in the calvaria, the first one takes into account the formation of the primary centers of ossification. This step counts on the differentiation from mesenchymal cells into osteoblasts. A molecular mechanism is used based on a system of reaction-diffusion between two antagonistic molecules, which are BMP2 and Noggin. To this effect we used equations whose behavior allows finding Turing patterns that determine the location of the primary centers. In the second step of the model we used a molecule that is expressed by osteoblasts, called Dxl5 and that is expressed from the osteoblasts of each flat bone. This molecule allows bone growth through its borders through cell differentiation adjacent to each bone of the skull. The model has been implemented numerically using the finite element method. The results allow us to observe a good approximation of the formation of flat bones of the membranous skull as well as the formation of fontanelles and sutures.
Collapse
Affiliation(s)
- Diego A Garzón-Alvarado
- Research Group on Numerical Methods for Engineering (GNUM), Universidad Nacional de Colombia, Cra 30 No. 45-03, Bogotá, Colombia.
| | | | | |
Collapse
|
9
|
Garzón-Alvarado DA. A biochemical strategy for simulation of endochondral and intramembranous ossification. Comput Methods Biomech Biomed Engin 2013; 17:1237-47. [DOI: 10.1080/10255842.2012.741597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
10
|
Garzón-Alvarado DA. A hypothesis on the formation of the primary ossification centers in the membranous neurocranium: A mathematical and computational model. J Theor Biol 2013; 317:366-76. [DOI: 10.1016/j.jtbi.2012.09.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 09/12/2012] [Accepted: 09/14/2012] [Indexed: 11/27/2022]
Affiliation(s)
- Diego A Garzón-Alvarado
- Research Group on Numerical Methods for Engineering (GNUM), Departament of Mechanical and Mechatronical Engineering, Universidad Nacional de Colombia, Colombia.
| |
Collapse
|
11
|
Spongiosa primary development: a biochemical hypothesis by Turing patterns formations. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2012. [PMID: 23193429 PMCID: PMC3447359 DOI: 10.1155/2012/748302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We propose a biochemical model describing the formation of primary spongiosa architecture through a bioregulatory model by metalloproteinase 13 (MMP13) and vascular endothelial growth factor (VEGF). It is assumed that MMP13 regulates cartilage degradation and the VEGF allows vascularization and advances in the ossification front through the presence of osteoblasts. The coupling of this set of molecules is represented by reaction-diffusion equations with parameters in the Turing space, creating a stable spatiotemporal pattern that leads to the formation of the trabeculae present in the spongy tissue. Experimental evidence has shown that the MMP13 regulates VEGF formation, and it is assumed that VEGF negatively regulates MMP13 formation. Thus, the patterns obtained by ossification may represent the primary spongiosa formation during endochondral ossification. Moreover, for the numerical solution, we used the finite element method with the Newton-Raphson method to approximate partial differential nonlinear equations. Ossification patterns obtained may represent the primary spongiosa formation during endochondral ossification.
Collapse
|
12
|
A mathematical model of the process of ligament repair: effect of cold therapy and mechanical stress. J Theor Biol 2012; 302:53-61. [PMID: 22381538 DOI: 10.1016/j.jtbi.2012.01.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 01/18/2012] [Accepted: 01/24/2012] [Indexed: 01/15/2023]
Abstract
This article proposes a mathematical model that predicts the wound healing process of the ligament after a sprain, grade II. The model describes the swelling, expression of the platelet-derived growth factor (PDGF), formation and migration of fibroblasts into the injury area and the expression of collagen fibers. Additionally, the model can predict the effect of ice treatment in reducing inflammation and the action of mechanical stress in the process of remodeling of collagen fibers. The results obtained from computer simulation show a high concordance with the clinical data previously reported by other authors.
Collapse
|
13
|
Kerkhofs J, Roberts SJ, Luyten FP, Van Oosterwyck H, Geris L. Relating the chondrocyte gene network to growth plate morphology: from genes to phenotype. PLoS One 2012; 7:e34729. [PMID: 22558096 PMCID: PMC3340393 DOI: 10.1371/journal.pone.0034729] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 03/08/2012] [Indexed: 01/22/2023] Open
Abstract
During endochondral ossification, chondrocyte growth and differentiation is controlled by many local signalling pathways. Due to crosstalks and feedback mechanisms, these interwoven pathways display a network like structure. In this study, a large-scale literature based logical model of the growth plate network was developed. The network is able to capture the different states (resting, proliferating and hypertrophic) that chondrocytes go through as they progress within the growth plate. In a first corroboration step, the effect of mutations in various signalling pathways of the growth plate network was investigated.
Collapse
Affiliation(s)
- Johan Kerkhofs
- Biomechanics Research Unit, University of Liège, Liège, Belgium
- Biomechanics section, K.U. Leuven, Leuven, Belgium
- Prometheus, The Leuven R&D division of skeletal tissue engineering, K.U. Leuven, Leuven, Belgium
| | - Scott J. Roberts
- Prometheus, The Leuven R&D division of skeletal tissue engineering, K.U. Leuven, Leuven, Belgium
- Rheumatology Department, K.U. Leuven, Leuven, Belgium
| | - Frank P. Luyten
- Prometheus, The Leuven R&D division of skeletal tissue engineering, K.U. Leuven, Leuven, Belgium
- Rheumatology Department, K.U. Leuven, Leuven, Belgium
| | - Hans Van Oosterwyck
- Biomechanics section, K.U. Leuven, Leuven, Belgium
- Prometheus, The Leuven R&D division of skeletal tissue engineering, K.U. Leuven, Leuven, Belgium
| | - Liesbet Geris
- Biomechanics Research Unit, University of Liège, Liège, Belgium
- Prometheus, The Leuven R&D division of skeletal tissue engineering, K.U. Leuven, Leuven, Belgium
| |
Collapse
|
14
|
GARZÓN-ALVARADO DIEGOA, NARVÁEZ-TOVAR CARLOSA, SILVA OCTAVIO. A MATHEMATICAL MODEL OF THE GROWTH PLATE. J MECH MED BIOL 2012. [DOI: 10.1142/s0219519411004277] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The growth plate is a structure formed of cells called chondrocytes; these are arranged in columns and provide the elongation of bone due to their proliferation and hypertrophy. In each column, we can see chondrocytes in their proliferating state, which are constantly dividing, and in hypertrophic state, which grow in a nearly spherical shape. These cells express different proteins and molecules throughout their half-life and exhibit a special behavior depending on their local mechanical and biochemical environments. This article develops a mathematical model that describes the relationship of geometry, growth by proliferation and hypertrophy, and vascular invasion with biochemical and mechanical factors present during endochondral ossification.
Collapse
Affiliation(s)
- DIEGO A. GARZÓN-ALVARADO
- Engineering Modeling and Numerical Methods Group, National University of Colombia, Cra 30 No 45-03, Bogotá, Colombia
| | - CARLOS A. NARVÁEZ-TOVAR
- Mechanical Engineering Applications and Research Group, Santo Tomás University, Cra 9 No 51-11, Bogotá, Colombia
- Engineering Modeling and Numerical Methods Group, National University of Colombia, Cra 30 No. 45-03, Bogotá, Colombia
| | - OCTAVIO SILVA
- Physical Rehabilitation Department, National University of Colombia, Cra 30 No 45-03, Bogotá, Colombia
| |
Collapse
|
15
|
Garzón-Alvarado DA, Martinez AMR, Segrera DLL. A model of cerebral cortex formation during fetal development using reaction-diffusion-convection equations with Turing space parameters. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2011; 104:489-497. [PMID: 21784547 DOI: 10.1016/j.cmpb.2011.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2010] [Revised: 06/11/2011] [Accepted: 07/02/2011] [Indexed: 05/31/2023]
Abstract
The cerebral cortex is a gray lamina formed by bodies of neurons covering the cerebral hemispheres, varying in thickness from 1.25 mm in the occipital lobe to 4mm in the anterior lobe. The brain's surface is about 30 times greater that of the skull because of its many folds; such folds form the gyri, sulci and fissures and mark out areas having specific functions, divided into five lobes. Convolution formation may vary between individuals and is an important feature of brain formation; such patterns can be mathematically represented as Turing patterns. This article describes how a phenomenological model was developed by describing the formation pattern for the gyri occurring in the cerebral cortex by reaction diffusion equations with Turing space parameters. Numerical examples for simplified geometries of a brain were solved to study pattern formation. The finite element method was used for the numerical solution, in conjunction with the Newton-Raphson method. The numerical examples showed that the model can represent cerebral cortex fold formation and reproduce pathologies related to gyri formation, such as polymicrogyria and lissencephaly.
Collapse
Affiliation(s)
- Diego Alexander Garzón-Alvarado
- Department of Mechanical and Mechatronic Engineering, Universidad Nacional de Colombia, Numerical Modelling and Methods in Engineering Group (GNUM), Colombia.
| | | | | |
Collapse
|
16
|
GARZÓN-ALVARADO DIEGOA, VELASCO MARCOA, NARVÁEZ-TOVAR CARLOSA. SELF-ASSEMBLED SCAFFOLDS USING REACTION–DIFFUSION SYSTEMS: A HYPOTHESIS FOR BONE REGENERATION. J MECH MED BIOL 2011. [DOI: 10.1142/s021951941100396x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
One area of tissue engineering concerns research into alternatives for new bone formation and replacing its function. Scaffolds have been developed to meet this requirement, allowing cell migration, bone tissue growth, transport of growth factors and nutrients, and the improvement of the mechanical properties of bone. Scaffolds are made from different biomaterials and manufactured using several techniques that, in some cases, do not allow full control over the size and orientation of the pores characterizing the scaffold. A novel hypothesis that a reaction–diffusion (RD) system can be used for designing the geometrical specifications of the bone matrix is thus presented here. The hypothesis was evaluated by making simulations in two- and three-dimensional RD systems in conjunction with the biomaterial scaffold. The results showed the methodology's effectiveness in controlling features such as the percentage of porosity, size, orientation, and interconnectivity of pores in an injectable bone matrix produced by the proposed hypothesis.
Collapse
Affiliation(s)
- DIEGO A. GARZÓN-ALVARADO
- Engineering Modeling and Numerical Methods Group National University of Colombia Cra 30 No. 45-03, Bogotá, Colombia
| | - MARCO A. VELASCO
- Mechanical Engineering Applications and Research Group, Santo Tomás University, Cra 9 No. 51-11, Bogotá, Colombia
| | - CARLOS A. NARVÁEZ-TOVAR
- Mechanical Engineering Applications and Research Group, Santo Tomás University, Cra 9 No. 51-11, Bogotá, Colombia
- Engineering Modeling and Numerical Methods Group, National University of Colombia, Cra 30 No. 45-03, Bogotá, Colombia
| |
Collapse
|
17
|
Garzón-Alvarado DA. Can the size of the epiphysis determine the number of secondary ossification centers? A mathematical approach. Comput Methods Biomech Biomed Engin 2011; 14:819-26. [DOI: 10.1080/10255842.2010.495844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
Peinado Cortés LM, Vanegas Acosta JC, Garzón Alvarado DA. A mechanobiological model of epiphysis structures formation. J Theor Biol 2011; 287:13-25. [PMID: 21810429 DOI: 10.1016/j.jtbi.2011.07.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 05/28/2011] [Accepted: 07/18/2011] [Indexed: 11/18/2022]
Abstract
Developing bone consists of epiphysis, metaphysis and diaphysis. The secondary ossification centre (SOC) appears and grows within the epiphysis, involving two histological stages. Firstly, cartilage canals appear; they carry hypertrophy factors towards the central area of the epiphysis. Canal growth and expansion is modulated by stress on the epiphysis. Secondly, the diffusion of hypertrophy factors causes SOC growth. Hypertrophy is regulated by biological and mechanical factors present within the epiphysis. The finite element method has been used for solving a coupled system of differential equations for modelling these histological stages of epiphyseal development. Cartilage canal spatial-temporal growth patterns were obtained as well as the SOC formation pattern. This model qualitatively agreed with experimental results reported by other authors.
Collapse
Affiliation(s)
- L M Peinado Cortés
- Mechanics and Materials Research Building 407, Office 203A, Universidad Nacional de Colombia, Bogotá, Colombia.
| | | | | |
Collapse
|
19
|
Garzón-Alvarado DA. A mathematical model for describing the metastasis of cancer in bone tissue. Comput Methods Biomech Biomed Engin 2011; 15:333-46. [PMID: 21264782 DOI: 10.1080/10255842.2010.535522] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Metastasis is the rapid proliferation of cancer cells (secondary tumour) at a specific place, generally leading to death. This occurs at anatomical parts providing the necessary environment for vascularity, oxygen and food to hide their actions and trigger the rapid growth of cancer. Prostate and breast cancers, for example, use bone marrow for their proliferation. Bone-supporting cancer cells thus adapt to the environment, mimicking the behaviour of genetic and molecular bone cells. Evidence of this has been given in Cecchini et al. (2005, EAU Update Ser. 3:214-226), providing arguments such as how cancer cell growth is so active during bone reabsorption. This paper simulates metastasis activation in bone marrow. A mathematical model has been developed involving the activation of molecules from bone tissue cells, which are necessary for cancer to proliferate. Here, we simulate two forms of secondary tumour growth depending on the type of metastasis: osteosclerosis and osteolysis.
Collapse
Affiliation(s)
- Diego Alexander Garzón-Alvarado
- Department of Mechanical and Mechatronics Engineering, National University of Colombia, Cra 30 45-03 Ed. 407 of 103A, Bogotá, Colombia.
| |
Collapse
|
20
|
Garzón-Alvarado DA, Cárdenas Sandoval RP, Vanegas Acosta JC. A mathematical model of medial collateral ligament repair: migration, fibroblast proliferation and collagen formation. Comput Methods Biomech Biomed Engin 2011; 15:571-83. [PMID: 21491258 DOI: 10.1080/10255842.2010.550887] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The partial rupture of ligament fibres leads to an injury known as grade 2 sprain. Wound healing after injury consists of four general stages: swelling, release of platelet-derived growth factor (PDGF), fibroblast migration and proliferation and collagen production. The aim of this paper is to present a mathematical model based on reaction-diffusion equations for describing the repair of the medial collateral ligament when it has suffered a grade 2 sprain. We have used the finite element method to solve the equations of this. The results have simulated the tissue swelling at the time of injury, predicted PDGF influence, the concentration of fibroblasts migrating towards the place of injury and reproduced the random orientation of immature collagen fibres. These results agree with experimental data reported by other authors. The model describes wound healing during the 9 days following such injury.
Collapse
Affiliation(s)
- D A Garzón-Alvarado
- Group of Mathematical Modeling and Numerical Methods, GNUM-UN, National University of Colombia, Bogotá, Colombia
| | | | | |
Collapse
|
21
|
Garzón-Alvarado DA, Peinado Cortés LM, Cárdenas Sandoval RP. A mathematical model of epiphyseal development: hypothesis of growth pattern of the secondary ossification centre. Comput Methods Biomech Biomed Engin 2011; 14:23-32. [DOI: 10.1080/10255842.2010.484810] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
22
|
Fasano A, Herrero M, López J, Medina E. On the dynamics of the growth plate in primary ossification. J Theor Biol 2010; 265:543-53. [DOI: 10.1016/j.jtbi.2010.05.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
23
|
Garzon-Alvarado DA, Peinado Cortes LM, Cardenas Sandoval RP. A mathematical model of epiphyseal development: hypothesis on the cartilage canals growth. Comput Methods Biomech Biomed Engin 2010; 13:765-72. [PMID: 20526919 DOI: 10.1080/10255841003606116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The role of cartilage canals is to transport nutrients and biological factors that cause the appearance of the secondary ossification centre (SOC). The SOC appears in the centre of the epiphysis of long bones. The canal development is a complex interaction between mechanical and biological factors that guide its expansion into the centre of the epiphysis. This article introduces the 'Hypothesis on the growth of cartilage canals'. Here, we have considered that the development of these canals is an essential event for the appearance of SOC. Moreover, it is also considered to be important for the transport of molecular factors (RUNX2 and MMP9) at the ends of such canals. Once the canals are merged in the centre of the epiphysis, these factors are released causing hypertrophy of adjacent cells. This RUNX2 and MMP9 release occurs due to the action of mechanical loads that supports the epiphysis. In order to test this hypothesis, we use a hybrid approach using the finite element method to simulate the mechanical stresses present in the epiphysis and the cellular automata to simulate the expansion of the canals and the hypertrophy factors pathway. By using this hybrid approach, we have obtained as a result the spatial-temporal patterns for the growth of cartilage canals and hypertrophy factors within the epiphysis. The model is in qualitative agreement with experimental results previously reported by other authors. Thus, we conclude that this model may be used as a methodological basis to present a complete mathematical model of the processes involved in epiphyseal development.
Collapse
|