1
|
Guerra A, Belinha J, Salgado C, Monteiro FJ, Natal Jorge R. Computational Insights into the Interplay of Mechanical Forces in Angiogenesis. Biomedicines 2024; 12:1045. [PMID: 38791007 PMCID: PMC11117778 DOI: 10.3390/biomedicines12051045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/15/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
This study employs a meshless computational model to investigate the impacts of compression and traction on angiogenesis, exploring their effects on vascular endothelial growth factor (VEGF) diffusion and subsequent capillary network formation. Three distinct initial domain geometries were defined to simulate variations in endothelial cell sprouting and VEGF release. Compression and traction were applied, and the ensuing effects on VEGF diffusion coefficients were analysed. Compression promoted angiogenesis, increasing capillary network density. The reduction in the VEGF diffusion coefficient under compression altered VEGF concentration, impacting endothelial cell migration patterns. The findings were consistent across diverse simulation scenarios, demonstrating the robust influence of compression on angiogenesis. This computational study enhances our understanding of the intricate interplay between mechanical forces and angiogenesis. Compression emerges as an effective mediator of angiogenesis, influencing VEGF diffusion and vascular pattern. These insights may contribute to innovative therapeutic strategies for angiogenesis-related disorders, fostering tissue regeneration and addressing diseases where angiogenesis is crucial.
Collapse
Affiliation(s)
- Ana Guerra
- INEGI—Instituto de Ciência e Inovação em Engenharia Mecânica e Engenharia Industrial, 4200-465 Porto, Portugal
| | - Jorge Belinha
- ISEP—Instituto Superior de Engenharia do Porto, Departamento de Engenharia Mecânica, Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal;
| | - Christiane Salgado
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (C.S.); (F.J.M.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - Fernando Jorge Monteiro
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (C.S.); (F.J.M.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - Renato Natal Jorge
- LAETA—Laboratório Associado de Energia, Transportes e Aeronáutica, Universidade do Porto, 4200-165 Porto, Portugal;
- FEUP—Faculdade de Engenharia, Departamento de Engenharia Mecânica, Universidade do Porto, 4200-165 Porto, Portugal
| |
Collapse
|
2
|
Flynn K, Mahmoud NN, Sharifi S, Gould LJ, Mahmoudi M. Chronic Wound Healing Models. ACS Pharmacol Transl Sci 2023; 6:783-801. [PMID: 37200810 PMCID: PMC10186367 DOI: 10.1021/acsptsci.3c00030] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Indexed: 05/20/2023]
Abstract
In this paper, we review and analyze the commonly available wound healing models reported in the literature and discuss their advantages and issues, considering their relevance and translational potential to humans. Our analysis includes different in vitro and in silico as well as in vivo models and experimental techniques. We further explore the new technologies in the study of wound healing to provide an all encompassing review of the most efficient ways to proceed with wound healing experiments. We revealed that there is not one model of wound healing that is superior and can give translatable results to human research. Rather, there are many different models that have specific uses for studying certain processes or stages of wound healing. Our analysis suggests that when performing an experiment to assess stages of wound healing or different therapies to enhance healing, one must consider not only the species that will be used but also the type of model and how this can best replicate the physiology or pathophysiology in humans.
Collapse
Affiliation(s)
- Kiley Flynn
- Department
of Radiology and Precision Health Program, Michigan State University, East Lansing, Michigan 48824-1312, United States
| | - Nouf N. Mahmoud
- Faculty
of Pharmacy, Al-Zaytoonah University of
Jordan, Amman 11733, Jordan
- Department
of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar
| | - Shahriar Sharifi
- Department
of Radiology and Precision Health Program, Michigan State University, East Lansing, Michigan 48824-1312, United States
| | - Lisa J. Gould
- Department
of Surgery, South Shore Hospital, South Weymouth, Massachusetts 02190, United States
| | - Morteza Mahmoudi
- Department
of Radiology and Precision Health Program, Michigan State University, East Lansing, Michigan 48824-1312, United States
| |
Collapse
|
3
|
Grambow E, Sorg H, Sorg CGG, Strüder D. Experimental Models to Study Skin Wound Healing with a Focus on Angiogenesis. Med Sci (Basel) 2021; 9:medsci9030055. [PMID: 34449673 PMCID: PMC8395822 DOI: 10.3390/medsci9030055] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 12/11/2022] Open
Abstract
A large number of models are now available for the investigation of skin wound healing. These can be used to study the processes that take place in a phase-specific manner under both physiological and pathological conditions. Most models focus on wound closure, which is a crucial parameter for wound healing. However, vascular supply plays an equally important role and corresponding models for selective or parallel investigation of microcirculation regeneration and angiogenesis are also described. In this review article, we therefore focus on the different levels of investigation of skin wound healing (in vivo to in virtuo) and the investigation of angiogenesis and its parameters.
Collapse
Affiliation(s)
- Eberhard Grambow
- Department of General, Visceral, Thoracic, Vascular and Transplantation Surgery, Rostock University Medical Center, 18057 Rostock, Germany
- Correspondence:
| | - Heiko Sorg
- Department of Health, University of Witten/Herdecke, Alfred-Herrhausen-Str. 50, 58455 Witten, Germany;
- Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, Klinikum Westfalen, Am Knappschaftskrankenhaus 1, 44309 Dortmund, Germany
| | - Christian G. G. Sorg
- Chair of Management and Innovation in Health Care, Department of Management and Entrepreneurship, Faculty of Management, Economics and Society, Witten/Herdecke University, Alfred-Herrhausen-Straße 50, 58455 Witten, Germany;
| | - Daniel Strüder
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery “Otto Körner”, Rostock University Medical Center, 18057 Rostock, Germany;
| |
Collapse
|
4
|
Guerra A, Belinha J, Mangir N, MacNeil S, Natal Jorge R. Simulation of the process of angiogenesis: Quantification and assessment of vascular patterning in the chicken chorioallantoic membrane. Comput Biol Med 2021; 136:104647. [PMID: 34274599 DOI: 10.1016/j.compbiomed.2021.104647] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/22/2021] [Accepted: 07/08/2021] [Indexed: 12/26/2022]
Abstract
Angiogenesis, the formation of new blood vessels from pre-existing ones, begins during embryonic development and continues throughout life. Sprouting angiogenesis is a well-defined process, being mainly influenced by vascular endothelial growth factor (VEGF). In this study, we propose a meshless-based model capable of mimicking the angiogenic response to several VEGF concentrations. In this model, endothelial cells migrate according to a diffusion-reaction equation, following the VEGF gradient concentration. The chick chorioallantoic membrane (CAM) assay was used to model the branching process and to validate the obtained numerical results. To analyse the angiogenic response, the total vessel number and the total vessel length presented in the CAM images and in the simulations for all the VEGF concentrations tested were quantified. In both the CAM assay and simulation, the treatments with VEGF increased the total vessel number and the total vessel length. The obtained quantitative results were very similar between the two methodologies used. The proposed model accurately simulates the capillary network pattern concerning its structure and morphology, for the lowest VEGF concentration tested. For the highest VEGF concentration, the capillary network predicted by the model was less accurate when compared to the one presented in the CAM assay but this may be explained by changes in blood vessel width at higher VEGF concentrations. This remains to be tested.
Collapse
Affiliation(s)
- Ana Guerra
- Institute of Science and Innovation in Mechanical and Industrial Engineering (INEGI), Rua Dr. Roberto Frias, 400, 4200-465, Porto, Portugal.
| | - Jorge Belinha
- School of Engineering, Polytechnic of Porto (ISEP), Mechanical Engineering Department, Rua Dr. António Bernardino de Almeida, 431, 4249-015, Porto, Portugal.
| | - Naside Mangir
- Kroto Research Institute, Department of Material Science and Engineering, University of Sheffield, North Campus, Broad Lane, Sheffield, S3 7HQ, UK; Hacettepe University School of Medicine, Department of Urology, Sihhiye, 06100, Ankara, Turkey.
| | - Sheila MacNeil
- Kroto Research Institute, Department of Material Science and Engineering, University of Sheffield, North Campus, Broad Lane, Sheffield, S3 7HQ, UK.
| | - Renato Natal Jorge
- Associated Laboratory for Energy, Transports and Aeronautics (LAETA - INEGI), Rua Dr. Roberto Frias, 400, 4200-465, Porto, Portugal; Faculty of Engineering of the University of Porto (FEUP), Mechanical Engineering Department, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal.
| |
Collapse
|
5
|
Guerra A, Belinha J, Natal Jorge R. A preliminary study of endothelial cell migration during angiogenesis using a meshless method approach. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2020; 36:e3393. [PMID: 32783379 DOI: 10.1002/cnm.3393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 08/03/2020] [Accepted: 08/07/2020] [Indexed: 06/11/2023]
Abstract
Angiogenesis, the development of new blood capillaries, is crucial for the wound healing process. This biological process allows the proper blood supply to the tissue, essential for cell proliferation and viability. Several biological factors modulate angiogenesis, however the vascular endothelial growth factor (VEGF) is the main one. Given the complexity of angiogenesis, in the last years, computational modelling aroused the interest of scientists since it allows to model this process with different, more economic and faster methodologies, comparatively to experimental approaches. In this work, a mathematical model motivated by the analysis of the effect of VEGF diffusion gradient in endothelial cell migration is presented. This is the process that allows capillary formation and it is essential for angiogenesis. The proposed mathematical model is combined with the Radial Point Interpolation Method, being the area discretized considering an unorganized nodal cloud and a background mesh of integration points, without predefined relations. The nodal connectivity was achieved using the "influence-domain" approach. The interpolation functions were constructed using the Radial Point Interpolators techniques. This method combines a radial basis functions with a polynomial functions to obtain the approximation. This preliminary work does not account for the whole complexity of cell and tissue biology, and numerical results are presented for an idealised two-dimensional setting. Nevertheless, the developed RPIM software is a valid numerical tool that can be adjusted to biological problems and may also be able to complement the biological and medical subjects.
Collapse
Affiliation(s)
- Ana Guerra
- Institute of Science and Innovation in Mechanical and Industrial Engineering (INEGI), Porto, Portugal
| | - Jorge Belinha
- School of Engineering, Polytechnic of Porto (ISEP), Mechanical Engineering Department, Porto, Portugal
| | - Renato Natal Jorge
- LAETA, INEGI, Porto, Portugal
- Mechanical Engineering Department, University of Porto (FEUP), Porto, Portugal
| |
Collapse
|
6
|
Guerra A, Belinha J, Mangir N, MacNeil S, Natal Jorge R. Sprouting Angiogenesis: A Numerical Approach with Experimental Validation. Ann Biomed Eng 2020; 49:871-884. [PMID: 32974754 DOI: 10.1007/s10439-020-02622-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 09/14/2020] [Indexed: 12/13/2022]
Abstract
A functional vascular network is essential to the correct wound healing. In sprouting angiogenesis, vascular endothelial growth factor (VEGF) regulates the formation of new capillaries from pre-existing vessels. This is a very complex process and mathematical formulation permits to study angiogenesis using less time-consuming, reproducible and cheaper methodologies. This study aimed to mimic the chemoattractant effect of VEGF in stimulating sprouting angiogenesis. We developed a numerical model in which endothelial cells migrate according to a diffusion-reaction equation for VEGF. A chick chorioallantoic membrane (CAM) bioassay was used to obtain some important parameters to implement in the model and also to validate the numerical results. We verified that endothelial cells migrate following the highest VEGF concentration. We compared the parameters-total branching number, total vessel length and branching angle-that were obtained in the in silico and the in vivo methodologies and similar results were achieved (p-value smaller than 0.5; n = 6). For the difference between the total capillary volume fractions assessed using both methodologies values smaller than 15% were obtained. In this study we simulated, for the first time, the capillary network obtained during the CAM assay with a realistic morphology and structure.
Collapse
Affiliation(s)
- Ana Guerra
- Institute of Science and Innovation in Mechanical and Industrial Engineering (INEGI), Rua Dr. Roberto Frias, 400, 4200-465, Porto, Portugal
| | - Jorge Belinha
- Mechanical Engineering Department, School of Engineering, Polytechnic of Porto (ISEP), Rua Dr. António Bernardino de Almeida, 431, 4249-015, Porto, Portugal
| | - Naside Mangir
- Kroto Research Institute, Department of Material Science and Engineering, University of Sheffield, North Campus, Broad Lane, Sheffield, S3 7HQ, UK.,Department of Urology, Royal Hallamshire Hospital, Glossop Rd, Sheffield, S10 2JF, UK
| | - Sheila MacNeil
- Kroto Research Institute, Department of Material Science and Engineering, University of Sheffield, North Campus, Broad Lane, Sheffield, S3 7HQ, UK
| | - Renato Natal Jorge
- Associated Laboratory for Energy, Transports and Aeronautics (LAETA - INEGI), Rua Dr. Roberto Frias, 400, 4200-465, Porto, Portugal. .,Mechanical Engineering Department, Faculty of Engineering of the University of Porto (FEUP), Rua Dr. Roberto Frias, 4200-465, Porto, Portugal.
| |
Collapse
|
7
|
Guerra A, Belinha J, Jorge RN. Modelling skin wound healing angiogenesis: A review. J Theor Biol 2018; 459:1-17. [PMID: 30240579 DOI: 10.1016/j.jtbi.2018.09.020] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/14/2018] [Accepted: 09/18/2018] [Indexed: 12/22/2022]
Abstract
The occurrence of wounds is a main health concern in Western society due to their high frequency and treatment cost. During wound healing, the formation of a functional blood vessel network through angiogenesis is an essential process. Angiogenesis allows the reestablishment of the normal blood flow, the sufficient exchange of oxygen and nutrients and the removal of metabolic waste, necessary for cell proliferation and viability. Mathematical and computational models provide new tools to improve the healing process. In fact, over the last thirty years, in silico models have been continuously formulated to describe the effect of several biological and mechanical factors in angiogenesis during wound healing. Additionally, with different levels of complexity, these models allow coupling the human skin structure, to distinct cell types and growth factors, to study extracellular matrix composition and to understand its deformation. This paper discusses how in silico models, which are more economical and less time-consuming comparatively to laboratory methodologies, can help test new strategies to promote/optimize angiogenesis. The continuum, cell-based and hybrid mathematical models of wound healing angiogenesis are reviewed in the present paper, in order to identify possible improvements. Accordingly, the development of higher dimension models incorporating multiscale analysis at molecular, cellular and tissue level remains a challenge that future models should consider.
Collapse
Affiliation(s)
- Ana Guerra
- INEGI, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto 4200-465, Portugal.
| | - Jorge Belinha
- ISEP, School of Engineering, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida, Porto 4200-072, Portugal.
| | - Renato Natal Jorge
- INEGI, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto 4200-465, Portugal.
| |
Collapse
|
8
|
Hirashima T, Rens EG, Merks RMH. Cellular Potts modeling of complex multicellular behaviors in tissue morphogenesis. Dev Growth Differ 2017; 59:329-339. [DOI: 10.1111/dgd.12358] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 03/24/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Tsuyoshi Hirashima
- Institute for Frontier Life and Medical Sciences Kyoto University 53 Kawahara, Shogoin, Sakyo‐ku Kyoto 606‐8507 Japan
| | - Elisabeth G. Rens
- Centrum Wiskunde & Informatica Life Sciences Group Science Park 123 1098 XG Amsterdam the Netherlands
- Mathematical Institute Leiden University Niels Bohrweg 1 2333 CA Leiden the Netherlands
| | - Roeland M. H. Merks
- Centrum Wiskunde & Informatica Life Sciences Group Science Park 123 1098 XG Amsterdam the Netherlands
- Mathematical Institute Leiden University Niels Bohrweg 1 2333 CA Leiden the Netherlands
| |
Collapse
|
9
|
Bhattacharya P, Viceconti M. Multiscale modeling methods in biomechanics. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2017; 9:e1375. [PMID: 28102563 PMCID: PMC5412936 DOI: 10.1002/wsbm.1375] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 11/09/2016] [Accepted: 11/17/2016] [Indexed: 01/08/2023]
Abstract
More and more frequently, computational biomechanics deals with problems where the portion of physical reality to be modeled spans over such a large range of spatial and temporal dimensions, that it is impossible to represent it as a single space-time continuum. We are forced to consider multiple space-time continua, each representing the phenomenon of interest at a characteristic space-time scale. Multiscale models describe a complex process across multiple scales, and account for how quantities transform as we move from one scale to another. This review offers a set of definitions for this emerging field, and provides a brief summary of the most recent developments on multiscale modeling in biomechanics. Of all possible perspectives, we chose that of the modeling intent, which vastly affect the nature and the structure of each research activity. To the purpose we organized all papers reviewed in three categories: 'causal confirmation,' where multiscale models are used as materializations of the causation theories; 'predictive accuracy,' where multiscale modeling is aimed to improve the predictive accuracy; and 'determination of effect,' where multiscale modeling is used to model how a change at one scale manifests in an effect at another radically different space-time scale. Consistent with how the volume of computational biomechanics research is distributed across application targets, we extensively reviewed papers targeting the musculoskeletal and the cardiovascular systems, and covered only a few exemplary papers targeting other organ systems. The review shows a research subdomain still in its infancy, where causal confirmation papers remain the most common. WIREs Syst Biol Med 2017, 9:e1375. doi: 10.1002/wsbm.1375 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Pinaki Bhattacharya
- Department of Mechanical Engineering and INSIGNEO Institute for in silico MedicineUniversity of SheffieldSheffieldUK
| | - Marco Viceconti
- Department of Mechanical Engineering and INSIGNEO Institute for in silico MedicineUniversity of SheffieldSheffieldUK
| |
Collapse
|
10
|
Scianna M, Bassino E, Munaron L. An Innovative Assay for the Analysis of In Vitro Endothelial Remodeling: Experimental and Computational Evidence. J Cell Physiol 2016; 232:243-248. [PMID: 27334050 DOI: 10.1002/jcp.25468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 06/22/2016] [Indexed: 11/07/2022]
Abstract
The molecular and cellular mechanisms underlying vascular remodeling are currently investigated by experimental strategies which aim to mimic the complex environmental conditions found in vivo. Some of them focus on the tubulogenic activity of dispersed endothelial cell populations, while others evaluate vascular sprouting. Here we propose a new method to assess matrigel invasion starting from confluent or subconfluent monolayers of human microvascular ECs (HMVEC) seeded on different substrates. The experimental setting is also validated by an improved hybrid multiscale mathematical approach, which integrates a mesoscopic grid-based cellular Potts model, that describes HMVEC phenomenology, with a continuous one, accounting for the kinetics of diffusing growth factors. Both experimental and theoretical approaches show that the endothelial potential to invade, migrate, and organize in tubule structures is a function of selected environmental parameters. The present methodology is intended to be simple to use, standardized for rapid screening and suitable for mechanistic studies. J. Cell. Physiol. 232: 243-248, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Marco Scianna
- Department of Mathematical Sciences, Politecnico di Torino, Torino, Italy
| | - Eleonora Bassino
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Luca Munaron
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy. .,Centre for Nanostructured Interfaces and Surfaces (NIS), University of Torino, Torino, Italy.
| |
Collapse
|
11
|
Ciaccio EJ. Honored papers 2015. Comput Biol Med 2016. [DOI: 10.1016/j.compbiomed.2016.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
Colombi A, Scianna M, Preziosi L. Coherent modelling switch between pointwise and distributed representations of cell aggregates. J Math Biol 2016; 74:783-808. [PMID: 27423897 DOI: 10.1007/s00285-016-1042-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 06/19/2016] [Indexed: 02/03/2023]
Abstract
Biological systems are typically formed by different cell phenotypes, characterized by specific biophysical properties and behaviors. Moreover, cells are able to undergo differentiation or phenotypic transitions upon internal or external stimuli. In order to take these phenomena into account, we here propose a modelling framework in which cells can be described either as pointwise/concentrated particles or as distributed masses, according to their biological determinants. A set of suitable rules then defines a coherent procedure to switch between the two mathematical representations. The theoretical environment describing cell transition is then enriched by including cell migratory dynamics and duplication/apoptotic processes, as well as the kinetics of selected diffusing chemicals influencing the system evolution. Finally, biologically relevant numerical realizations are presented: in particular, they deal with the growth of a tumor spheroid and with the initial differentiation stages of the formation of the zebrafish posterior lateral line. Both phenomena mainly rely on cell phenotypic transition and differentiated behaviour, thereby constituting biological systems particularly suitable to assess the advantages of the proposed model.
Collapse
Affiliation(s)
- A Colombi
- Department of Mathematical Sciences "G. L. Lagrange", Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino, Italy
| | - M Scianna
- Department of Mathematical Sciences "G. L. Lagrange", Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino, Italy.
| | - L Preziosi
- Department of Mathematical Sciences "G. L. Lagrange", Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino, Italy
| |
Collapse
|
13
|
Allena R, Scianna M, Preziosi L. A Cellular Potts Model of single cell migration in presence of durotaxis. Math Biosci 2016; 275:57-70. [PMID: 26968932 DOI: 10.1016/j.mbs.2016.02.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 02/19/2016] [Accepted: 02/26/2016] [Indexed: 01/02/2023]
Abstract
Cell migration is a fundamental biological phenomenon during which cells sense their surroundings and respond to different types of signals. In presence of durotaxis, cells preferentially crawl from soft to stiff substrates by reorganizing their cytoskeleton from an isotropic to an anisotropic distribution of actin filaments. In the present paper, we propose a Cellular Potts Model to simulate single cell migration over flat substrates with variable stiffness. We have tested five configurations: (i) a substrate including a soft and a stiff region, (ii) a soft substrate including two parallel stiff stripes, (iii) a substrate made of successive stripes with increasing stiffness to create a gradient and (iv) a stiff substrate with four embedded soft squares. For each simulation, we have evaluated the morphology of the cell, the distance covered, the spreading area and the migration speed. We have then compared the numerical results to specific experimental observations showing a consistent agreement.
Collapse
Affiliation(s)
- R Allena
- Arts et Metiers ParisTech, LBM/Institut de Biomecanique Humaine Georges Charpak, 151 bd de l'Hopital, 75013 Paris, France.
| | - M Scianna
- Dipartimento di Scienze Mathematiche, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - L Preziosi
- Dipartimento di Scienze Mathematiche, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| |
Collapse
|