1
|
He J, Wang J, Han Z, Li B, Lv M, Shi Y. Cancer detection for small-size and ambiguous tumors based on semantic FPN and transformer. PLoS One 2023; 18:e0275194. [PMID: 36795663 PMCID: PMC9934456 DOI: 10.1371/journal.pone.0275194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/12/2022] [Indexed: 02/17/2023] Open
Abstract
Early detection of tumors has great significance for formative detection and determination of treatment plans. However, cancer detection remains a challenging task due to the interference of diseased tissue, the diversity of mass scales, and the ambiguity of tumor boundaries. It is difficult to extract the features of small-sized tumors and tumor boundaries, so semantic information of high-level feature maps is needed to enrich the regional features and local attention features of tumors. To solve the problems of small tumor objects and lack of contextual features, this paper proposes a novel Semantic Pyramid Network with a Transformer Self-attention, named SPN-TS, for tumor detection. Specifically, the paper first designs a new Feature Pyramid Network in the feature extraction stage. It changes the traditional cross-layer connection scheme and focuses on enriching the features of small-sized tumor regions. Then, we introduce the transformer attention mechanism into the framework to learn the local feature of tumor boundaries. Extensive experimental evaluations were performed on the publicly available CBIS-DDSM dataset, which is a Curated Breast Imaging Subset of the Digital Database for Screening Mammography. The proposed method achieved better performance in these models, achieving 93.26% sensitivity, 95.26% specificity, 96.78% accuracy, and 87.27% Matthews Correlation Coefficient (MCC) value, respectively. The method can achieve the best detection performance by effectively solving the difficulties of small objects and boundaries ambiguity. The algorithm can further promote the detection of other diseases in the future, and also provide algorithmic references for the general object detection field.
Collapse
Affiliation(s)
- Jingzhen He
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, China
| | - Jing Wang
- School of Information Science and Engineering, Shandong Normal University, Jinan, China
| | - Zeyu Han
- School of Mathematics and Statistics, Shandong University, WeiHai, China
| | - Baojun Li
- College of Vocational Education, Dezhou University, Dezhou, China
| | - Mei Lv
- School of Physical Education Department, Shandong Women’s University, Jinan, China
| | - Yunfeng Shi
- School of Information Science and Engineering, Shandong Normal University, Jinan, China
| |
Collapse
|
2
|
Tammineedi VSV, C. R, D. GK, Yalla V. Improvement of Segmentation Efficiency in Mammogram Images Using Dual-ROI Method. INTERNATIONAL JOURNAL OF HEALTHCARE INFORMATION SYSTEMS AND INFORMATICS 2022. [DOI: 10.4018/ijhisi.305236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Mammogram segmentation utilizing multi-region of intrigue is a standout amongst the most rising exploration territory in the medical image analysis. The steps engaged with the research are grouped into two kinds: 1) segmentation of mammogram images and 2) extraction of texture features from mammogram images. To overcome these difficulties, a compelling technique is proposed in this paper that comprises of three phases. In the principal arrangement, mammogram images from INbreast database are selected and improved utilizing Laplacian filtering. At that point, the pre-processed mammogram images are utilized for segmentation utilizing modified adaptively regularized kernel-based fuzzy C means (M-ARKFCM). After segmentation, statistical texture FE is connected for recognizing the patterns of cancer and non-cancer regions in mammogram images. Finally, the experimental outcome demonstrated that the proposed approach enhanced the segmentation efficiency by methods of statistical parameters contrasted with the existing operating procedures.
Collapse
Affiliation(s)
| | - Raju C.
- Sri Venkateswara Engineering College, India
| | | | | |
Collapse
|
3
|
Baghdadi NA, Malki A, Magdy Balaha H, AbdulAzeem Y, Badawy M, Elhosseini M. Classification of breast cancer using a manta-ray foraging optimized transfer learning framework. PeerJ Comput Sci 2022; 8:e1054. [PMID: 36092017 PMCID: PMC9454783 DOI: 10.7717/peerj-cs.1054] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Due to its high prevalence and wide dissemination, breast cancer is a particularly dangerous disease. Breast cancer survival chances can be improved by early detection and diagnosis. For medical image analyzers, diagnosing is tough, time-consuming, routine, and repetitive. Medical image analysis could be a useful method for detecting such a disease. Recently, artificial intelligence technology has been utilized to help radiologists identify breast cancer more rapidly and reliably. Convolutional neural networks, among other technologies, are promising medical image recognition and classification tools. This study proposes a framework for automatic and reliable breast cancer classification based on histological and ultrasound data. The system is built on CNN and employs transfer learning technology and metaheuristic optimization. The Manta Ray Foraging Optimization (MRFO) approach is deployed to improve the framework's adaptability. Using the Breast Cancer Dataset (two classes) and the Breast Ultrasound Dataset (three-classes), eight modern pre-trained CNN architectures are examined to apply the transfer learning technique. The framework uses MRFO to improve the performance of CNN architectures by optimizing their hyperparameters. Extensive experiments have recorded performance parameters, including accuracy, AUC, precision, F1-score, sensitivity, dice, recall, IoU, and cosine similarity. The proposed framework scored 97.73% on histopathological data and 99.01% on ultrasound data in terms of accuracy. The experimental results show that the proposed framework is superior to other state-of-the-art approaches in the literature review.
Collapse
Affiliation(s)
- Nadiah A. Baghdadi
- College of Nursing, Nursing Management and Education Department, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Amer Malki
- College of Computer Science and Engineering, Taibah University, Yanbu, Saudi Arabia
| | - Hossam Magdy Balaha
- Computers and Control Systems Engineering Department, Faculty of Engineering, Mansoura University, Mansoura, Egypt
| | - Yousry AbdulAzeem
- Computer Engineering Department, Misr Higher Institute for Engineering and Technology, Mansoura, Egypt
| | - Mahmoud Badawy
- Computers and Control Systems Engineering Department, Faculty of Engineering, Mansoura University, Mansoura, Egypt
| | - Mostafa Elhosseini
- College of Computer Science and Engineering, Taibah University, Yanbu, Saudi Arabia
- Computers and Control Systems Engineering Department, Faculty of Engineering, Mansoura University, Mansoura, Egypt
| |
Collapse
|
4
|
Basurto-Hurtado JA, Cruz-Albarran IA, Toledano-Ayala M, Ibarra-Manzano MA, Morales-Hernandez LA, Perez-Ramirez CA. Diagnostic Strategies for Breast Cancer Detection: From Image Generation to Classification Strategies Using Artificial Intelligence Algorithms. Cancers (Basel) 2022; 14:3442. [PMID: 35884503 PMCID: PMC9322973 DOI: 10.3390/cancers14143442] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/02/2022] [Accepted: 07/12/2022] [Indexed: 02/04/2023] Open
Abstract
Breast cancer is one the main death causes for women worldwide, as 16% of the diagnosed malignant lesions worldwide are its consequence. In this sense, it is of paramount importance to diagnose these lesions in the earliest stage possible, in order to have the highest chances of survival. While there are several works that present selected topics in this area, none of them present a complete panorama, that is, from the image generation to its interpretation. This work presents a comprehensive state-of-the-art review of the image generation and processing techniques to detect Breast Cancer, where potential candidates for the image generation and processing are presented and discussed. Novel methodologies should consider the adroit integration of artificial intelligence-concepts and the categorical data to generate modern alternatives that can have the accuracy, precision and reliability expected to mitigate the misclassifications.
Collapse
Affiliation(s)
- Jesus A. Basurto-Hurtado
- C.A. Mecatrónica, Facultad de Ingeniería, Campus San Juan del Río, Universidad Autónoma de Querétaro, Rio Moctezuma 249, San Cayetano, San Juan del Rio 76807, Mexico; (J.A.B.-H.); (I.A.C.-A.)
- Laboratorio de Dispositivos Médicos, Facultad de Ingeniería, Universidad Autónoma de Querétaro, Carretera a Chichimequillas S/N, Ejido Bolaños, Santiago de Querétaro 76140, Mexico
| | - Irving A. Cruz-Albarran
- C.A. Mecatrónica, Facultad de Ingeniería, Campus San Juan del Río, Universidad Autónoma de Querétaro, Rio Moctezuma 249, San Cayetano, San Juan del Rio 76807, Mexico; (J.A.B.-H.); (I.A.C.-A.)
- Laboratorio de Dispositivos Médicos, Facultad de Ingeniería, Universidad Autónoma de Querétaro, Carretera a Chichimequillas S/N, Ejido Bolaños, Santiago de Querétaro 76140, Mexico
| | - Manuel Toledano-Ayala
- División de Investigación y Posgrado de la Facultad de Ingeniería (DIPFI), Universidad Autónoma de Querétaro, Cerro de las Campanas S/N Las Campanas, Santiago de Querétaro 76010, Mexico;
| | - Mario Alberto Ibarra-Manzano
- Laboratorio de Procesamiento Digital de Señales, Departamento de Ingeniería Electrónica, Division de Ingenierias Campus Irapuato-Salamanca (DICIS), Universidad de Guanajuato, Carretera Salamanca-Valle de Santiago KM. 3.5 + 1.8 Km., Salamanca 36885, Mexico;
| | - Luis A. Morales-Hernandez
- C.A. Mecatrónica, Facultad de Ingeniería, Campus San Juan del Río, Universidad Autónoma de Querétaro, Rio Moctezuma 249, San Cayetano, San Juan del Rio 76807, Mexico; (J.A.B.-H.); (I.A.C.-A.)
| | - Carlos A. Perez-Ramirez
- Laboratorio de Dispositivos Médicos, Facultad de Ingeniería, Universidad Autónoma de Querétaro, Carretera a Chichimequillas S/N, Ejido Bolaños, Santiago de Querétaro 76140, Mexico
| |
Collapse
|
5
|
Deep convolutional neural networks for computer-aided breast cancer diagnostic: a survey. Neural Comput Appl 2022. [DOI: 10.1007/s00521-021-06804-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
6
|
Chen C, Qin Y, Cheng J, Gao F, Zhou X. Texture Analysis of Fat-Suppressed T2-Weighted Magnetic Resonance Imaging and Use of Machine Learning to Discriminate Nasal and Paranasal Sinus Small Round Malignant Cell Tumors. Front Oncol 2021; 11:701289. [PMID: 34966664 PMCID: PMC8710453 DOI: 10.3389/fonc.2021.701289] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 11/18/2021] [Indexed: 02/05/2023] Open
Abstract
Objective We used texture analysis and machine learning (ML) to classify small round cell malignant tumors (SRCMTs) and Non-SRCMTs of nasal and paranasal sinus on fat-suppressed T2 weighted imaging (Fs-T2WI). Materials Preoperative MRI scans of 164 patients from 1 January 2018 to 1 January 2021 diagnosed with SRCMTs and Non-SRCMTs were included in this study. A total of 271 features were extracted from each regions of interest. Datasets were randomly divided into two sets, including a training set (∼70%) and a test set (∼30%). The Pearson correlation coefficient (PCC) and principal component analysis (PCA) methods were performed to reduce dimensions, and the Analysis of Variance (ANOVA), Kruskal-Wallis (KW), and Recursive Feature Elimination (RFE) and Relief were performed for feature selections. Classifications were performed using 10 ML classifiers. Results were evaluated using a leave one out cross-validation analysis. Results We compared the AUC of all pipelines on the validation dataset with FeAture Explorer (FAE) software. The pipeline using a PCC dimension reduction, relief feature selection, and gaussian process (GP) classifier yielded the highest area under the curve (AUC) using 15 features. When the “one-standard error” rule was used, FAE also produced a simpler model with 13 features, including S(5,-5)SumAverg, S(3,0)InvDfMom, Skewness, WavEnHL_s-3, Horzl_GlevNonU, Horzl_RLNonUni, 135dr_GlevNonU, WavEnLL_s-3, Teta4, Teta2, S(5,5)DifVarnc, Perc.01%, and WavEnLH_s-2. The AUCs of the training/validation/test datasets were 1.000/0.965/0.979, and the accuracies, sensitivities, and specificities were 0.890, 0.880, and 0.920, respectively. The best algorithm was GP whose AUCs of the training/validation/test datasets by the two-dimensional reduction methods and four feature selection methods were greater than approximately 0.800. Especially, the AUCs of different datasets were greater than approximately 0.900 using the PCC, RFE/Relief, and GP algorithms. Conclusions We demonstrated the feasibility of combining artificial intelligence and the radiomics from Fs-T2WI to differentially diagnose SRCMTs and Non-SRCMTs. This non-invasive approach could be very promising in clinical oncology.
Collapse
Affiliation(s)
- Chen Chen
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Yuhui Qin
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Junying Cheng
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fabao Gao
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoyue Zhou
- MR Collaboration, Siemens Healthineers Ltd., Shanghai, China
| |
Collapse
|
7
|
Breast Cancer Detection Using Mammogram Images with Improved Multi-Fractal Dimension Approach and Feature Fusion. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112412122] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Breast cancer detection using mammogram images at an early stage is an important step in disease diagnostics. We propose a new method for the classification of benign or malignant breast cancer from mammogram images. Hybrid thresholding and the machine learning method are used to derive the region of interest (ROI). The derived ROI is then separated into five different blocks. The wavelet transform is applied to suppress noise from each produced block based on BayesShrink soft thresholding by capturing high and low frequencies within different sub-bands. An improved fractal dimension (FD) approach, called multi-FD (M-FD), is proposed to extract multiple features from each denoised block. The number of features extracted is then reduced by a genetic algorithm. Five classifiers are trained and used with the artificial neural network (ANN) to classify the extracted features from each block. Lastly, the fusion process is performed on the results of five blocks to obtain the final decision. The proposed approach is tested and evaluated on four benchmark mammogram image datasets (MIAS, DDSM, INbreast, and BCDR). We present the results of single- and double-dataset evaluations. Only one dataset is used for training and testing in the single-dataset evaluation, whereas two datasets (one for training, and one for testing) are used in the double-dataset evaluation. The experiment results show that the proposed method yields better results on the INbreast dataset in the single-dataset evaluation, whilst better results are obtained on the remaining datasets in the double-dataset evaluation. The proposed approach outperforms other state-of-the-art models on the Mini-MIAS dataset.
Collapse
|
8
|
Pawar M, Talbar S. Local entropy maximization based image fusion for contrast enhancement of mammogram. JOURNAL OF KING SAUD UNIVERSITY - COMPUTER AND INFORMATION SCIENCES 2021. [DOI: 10.1016/j.jksuci.2018.02.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Zerouaoui H, Idri A. Reviewing Machine Learning and Image Processing Based Decision-Making Systems for Breast Cancer Imaging. J Med Syst 2021; 45:8. [PMID: 33404910 DOI: 10.1007/s10916-020-01689-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/01/2020] [Indexed: 01/11/2023]
Abstract
Breast cancer (BC) is the leading cause of death among women worldwide. It affects in general women older than 40 years old. Medical images analysis is one of the most promising research areas since it provides facilities for diagnosis and decision-making of several diseases such as BC. This paper conducts a Structured Literature Review (SLR) of the use of Machine Learning (ML) and Image Processing (IP) techniques to deal with BC imaging. A set of 530 papers published between 2000 and August 2019 were selected and analyzed according to ten criteria: year and publication channel, empirical type, research type, medical task, machine learning techniques, datasets used, validation methods, performance measures and image processing techniques which include image pre-processing, segmentation, feature extraction and feature selection. Results showed that diagnosis was the most used medical task and that Deep Learning techniques (DL) were largely used to perform classification. Furthermore, we found out that classification was the most ML objective investigated followed by prediction and clustering. Most of the selected studies used Mammograms as imaging modalities rather than Ultrasound or Magnetic Resonance Imaging with the use of public or private datasets with MIAS as the most frequently investigated public dataset. As for image processing techniques, the majority of the selected studies pre-process their input images by reducing the noise and normalizing the colors, and some of them use segmentation to extract the region of interest with the thresholding method. For feature extraction, we note that researchers extracted the relevant features using classical feature extraction techniques (e.g. Texture features, Shape features, etc.) or DL techniques (e. g. VGG16, VGG19, ResNet, etc.), and finally few papers used feature selection techniques in particular the filter methods.
Collapse
Affiliation(s)
- Hasnae Zerouaoui
- Modeling, Simulation and Data Analysis, Mohammed VI Polytechnic University, Benguerir, Morocco
| | - Ali Idri
- Modeling, Simulation and Data Analysis, Mohammed VI Polytechnic University, Benguerir, Morocco. .,Software Project Management Research Team, ENSIAS, Mohammed V University in Rabat, Rabat, Morocco.
| |
Collapse
|
10
|
|
11
|
Bruno A, Ardizzone E, Vitabile S, Midiri M. A Novel Solution Based on Scale Invariant Feature Transform Descriptors and Deep Learning for the Detection of Suspicious Regions in Mammogram Images. JOURNAL OF MEDICAL SIGNALS & SENSORS 2020; 10:158-173. [PMID: 33062608 PMCID: PMC7528986 DOI: 10.4103/jmss.jmss_31_19] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 10/01/2019] [Accepted: 05/06/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Deep learning methods have become popular for their high-performance rate in the classification and detection of events in computer vision tasks. Transfer learning paradigm is widely adopted to apply pretrained convolutional neural network (CNN) on medical domains overcoming the problem of the scarcity of public datasets. Some investigations to assess transfer learning knowledge inference abilities in the context of mammogram screening and possible combinations with unsupervised techniques are in progress. METHODS We propose a novel technique for the detection of suspicious regions in mammograms that consist of the combination of two approaches based on scale invariant feature transform (SIFT) keypoints and transfer learning with pretrained CNNs such as PyramidNet and AlexNet fine-tuned on digital mammograms generated by different mammography devices. Preprocessing, feature extraction, and selection steps characterize the SIFT-based method, while the deep learning network validates the candidate suspicious regions detected by the SIFT method. RESULTS The experiments conducted on both mini-MIAS dataset and our new public dataset Suspicious Region Detection on Mammogram from PP (SuReMaPP) of 384 digital mammograms exhibit high performances compared to several state-of-the-art methods. Our solution reaches 98% of sensitivity and 90% of specificity on SuReMaPP and 94% of sensitivity and 91% of specificity on mini-MIAS. CONCLUSIONS The experimental sessions conducted so far prompt us to further investigate the powerfulness of transfer learning over different CNNs and possible combinations with unsupervised techniques. Transfer learning performances' accuracy may decrease when the training and testing images come out from mammography devices with different properties.
Collapse
Affiliation(s)
- Alessandro Bruno
- Faculty of Media and Communication, Department - NCCA (National Centre for Computer Animation) at Bournemouth University, Poole, Dorset, United Kingdom
| | | | - Salvatore Vitabile
- Department of Biomedicine, Neuroscience and Advanced Diagnostic at Palermo University, Palermo, Italy
| | - Massimo Midiri
- Department of Biomedicine, Neuroscience and Advanced Diagnostic at Palermo University, Palermo, Italy
| |
Collapse
|
12
|
Dias Pedro RW, Machado‐Lima A, Nunes FLS. Towards an approach using grammars for automatic classification of masses in mammograms. Comput Intell 2020. [DOI: 10.1111/coin.12320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
| | - Ariane Machado‐Lima
- Information Systems, School of Arts, Sciences and Humanities University of São Paulo São Paulo Brazil
| | - Fátima L. S. Nunes
- Electrical Engineering, Polytechnic School University of São Paulo São Paulo Brazil
- Information Systems, School of Arts, Sciences and Humanities University of São Paulo São Paulo Brazil
| |
Collapse
|
13
|
Muramatsu C, Nishio M, Goto T, Oiwa M, Morita T, Yakami M, Kubo T, Togashi K, Fujita H. Improving breast mass classification by shared data with domain transformation using a generative adversarial network. Comput Biol Med 2020; 119:103698. [DOI: 10.1016/j.compbiomed.2020.103698] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 03/08/2020] [Accepted: 03/08/2020] [Indexed: 11/28/2022]
|
14
|
Kai C, Ishimaru M, Uchiyama Y, Shiraishi J, Shinohara N, Fujita H. [Selection of Radiomic Features for the Classification of Triple-negative Breast Cancer Based on Radiogenomics]. Nihon Hoshasen Gijutsu Gakkai Zasshi 2019; 75:24-31. [PMID: 30662029 DOI: 10.6009/jjrt.2019_jsrt_75.1.24] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Subtype classification of breast cancer by analyzing the gene expression profile of cancer cells is becoming a standard procedure. Breast cancer subtype classification is more useful than the conventional method because the characteristics of subtype classification is directly connected with the treatment method. However, genetic testing is invasive, and a part of cancer cells may not represent the overall nature of the cancer. In the computer-aided diagnosis (CAD) scheme for differentiation of triple-negative breast cancer (TNBC) by estimating the genetic properties of cancer based on Radiogenomics, principal component analysis (PCA) and least absolute shrinkage and selection operator (Lasso) were used for reducing the dimension of radiomic features, and we compared usefulness of both. We collected 81 magnetic resonance (MR) images, which included 30 TNBC and 51 others, from the public database. From the MR slice images, we selected the slice containing the largest area of the cancer and manually marked the cancer region. We subsequently calculated 294 radiomic features in the cancer region, and reduced the dimension of radiomic features. Finally, linear discriminant analysis, with the dimensionally compressed 10 image features, was used for distinguishing between TNBC and others. Area under the curve (AUC) was 0.60 when we used PCA, whereas AUC was 0.70 when we used Lasso (p=0.0058). Therefore, Lasso is useful for the determination of radiomic features in Radiogenomics.
Collapse
Affiliation(s)
- Chiharu Kai
- Graduate School of Health Sciences, Kumamoto University
| | | | - Yoshikazu Uchiyama
- Department of Medical Physics, Faculty of Life Sciences, Kumamoto University
| | - Junji Shiraishi
- Department of Medical Physics, Faculty of Life Sciences, Kumamoto University
| | - Norimitsu Shinohara
- Department of Radiological Technology, Faculty of Health Sciences, Gifu University of Medical Science
| | - Hiroshi Fujita
- Department Electrical, Electronic & Computer Engineering, Faculty Engineering, Gifu University
| |
Collapse
|
15
|
An extensive study for binary characterisation of adrenal tumours. Med Biol Eng Comput 2018; 57:849-862. [DOI: 10.1007/s11517-018-1923-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 10/25/2018] [Indexed: 12/21/2022]
|
16
|
Local Binary Patterns Descriptor Based on Sparse Curvelet Coefficients for False-Positive Reduction in Mammograms. JOURNAL OF HEALTHCARE ENGINEERING 2018; 2018:5940436. [PMID: 30356422 PMCID: PMC6178513 DOI: 10.1155/2018/5940436] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 06/18/2018] [Accepted: 08/08/2018] [Indexed: 11/18/2022]
Abstract
Breast Cancer is the most prevalent cancer among women across the globe. Automatic detection of breast cancer using Computer Aided Diagnosis (CAD) system suffers from false positives (FPs). Thus, reduction of FP is one of the challenging tasks to improve the performance of the diagnosis systems. In the present work, new FP reduction technique has been proposed for breast cancer diagnosis. It is based on appropriate integration of preprocessing, Self-organizing map (SOM) clustering, region of interest (ROI) extraction, and FP reduction. In preprocessing, contrast enhancement of mammograms has been achieved using Local Entropy Maximization algorithm. The unsupervised SOM clusters an image into number of segments to identify the cancerous region and extracts tumor regions (i.e., ROIs). However, it also detects some FPs which affects the efficiency of the algorithm. Therefore, to reduce the FPs, the output of the SOM is given to the FP reduction step which is aimed to classify the extracted ROIs into normal and abnormal class. FP reduction consists of feature mining from the ROIs using proposed local sparse curvelet coefficients followed by classification using artificial neural network (ANN). The performance of proposed algorithm has been validated using the local datasets as TMCH (Tata Memorial Cancer Hospital) and publicly available MIAS (Suckling et al., 1994) and DDSM (Heath et al., 2000) database. The proposed technique results in reduction of FPs from 0.85 to 0.02 FP/image for MIAS, 4.81 to 0.16 FP/image for DDSM, and 2.32 to 0.05 FP/image for TMCH reflecting huge improvement in classification of mammograms.
Collapse
|
17
|
Gao F, Wu T, Li J, Zheng B, Ruan L, Shang D, Patel B. SD-CNN: A shallow-deep CNN for improved breast cancer diagnosis. Comput Med Imaging Graph 2018; 70:53-62. [PMID: 30292910 DOI: 10.1016/j.compmedimag.2018.09.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 08/28/2018] [Accepted: 09/13/2018] [Indexed: 10/28/2022]
Abstract
Breast cancer is the second leading cause of cancer death among women worldwide. Nevertheless, it is also one of the most treatable malignances if detected early. Screening for breast cancer with full field digital mammography (FFDM) has been widely used. However, it demonstrates limited performance for women with dense breasts. An emerging technology in the field is contrast-enhanced digital mammography (CEDM), which includes a low energy (LE) image similar to FFDM, and a recombined image leveraging tumor neoangiogenesis similar to breast magnetic resonance imaging (MRI). CEDM has shown better diagnostic accuracy than FFDM. While promising, CEDM is not yet widely available across medical centers. In this research, we propose a Shallow-Deep Convolutional Neural Network (SD-CNN) where a shallow CNN is developed to derive "virtual" recombined images from LE images, and a deep CNN is employed to extract novel features from LE, recombined or "virtual" recombined images for ensemble models to classify the cases as benign vs. cancer. To evaluate the validity of our approach, we first develop a deep-CNN using 49 CEDM cases collected from Mayo Clinic to prove the contributions from recombined images for improved breast cancer diagnosis (0.85 in accuracy, 0.84 in AUC using LE imaging vs. 0.89 in accuracy, 0.91 in AUC using both LE and recombined imaging). We then develop a shallow-CNN using the same 49 CEDM cases to learn the nonlinear mapping from LE to recombined images. Next, we use 89 FFDM cases from INbreast, a public database to generate "virtual" recombined images. Using FFDM alone provides 0.84 in accuracy (AUC = 0.87), whereas SD-CNN improves the diagnostic accuracy to 0.90 (AUC = 0.92).
Collapse
Affiliation(s)
- Fei Gao
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, 85281, USA
| | - Teresa Wu
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, 85281, USA.
| | - Jing Li
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, 85281, USA
| | - Bin Zheng
- School of Electrical and Computer Engineering, College of Engineering, University of Oklahoma, Norman, OK, 73019, USA
| | - Lingxiang Ruan
- The First Affiliated Hospital of Medical School of Zhejiang University, Hangzhou, China
| | - Desheng Shang
- The First Affiliated Hospital of Medical School of Zhejiang University, Hangzhou, China
| | - Bhavika Patel
- Department of Radiology, Mayo Clinic in Arizona, Scottsdale, AZ, 85259, USA
| |
Collapse
|
18
|
Al-antari MA, Al-masni MA, Choi MT, Han SM, Kim TS. A fully integrated computer-aided diagnosis system for digital X-ray mammograms via deep learning detection, segmentation, and classification. Int J Med Inform 2018; 117:44-54. [DOI: 10.1016/j.ijmedinf.2018.06.003] [Citation(s) in RCA: 184] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/22/2018] [Accepted: 06/06/2018] [Indexed: 11/28/2022]
|
19
|
Al-Masni MA, Al-Antari MA, Park JM, Gi G, Kim TY, Rivera P, Valarezo E, Choi MT, Han SM, Kim TS. Simultaneous detection and classification of breast masses in digital mammograms via a deep learning YOLO-based CAD system. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2018; 157:85-94. [PMID: 29477437 DOI: 10.1016/j.cmpb.2018.01.017] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 12/08/2017] [Accepted: 01/15/2018] [Indexed: 05/05/2023]
Abstract
BACKGROUND AND OBJECTIVE Automatic detection and classification of the masses in mammograms are still a big challenge and play a crucial role to assist radiologists for accurate diagnosis. In this paper, we propose a novel Computer-Aided Diagnosis (CAD) system based on one of the regional deep learning techniques, a ROI-based Convolutional Neural Network (CNN) which is called You Only Look Once (YOLO). Although most previous studies only deal with classification of masses, our proposed YOLO-based CAD system can handle detection and classification simultaneously in one framework. METHODS The proposed CAD system contains four main stages: preprocessing of mammograms, feature extraction utilizing deep convolutional networks, mass detection with confidence, and finally mass classification using Fully Connected Neural Networks (FC-NNs). In this study, we utilized original 600 mammograms from Digital Database for Screening Mammography (DDSM) and their augmented mammograms of 2,400 with the information of the masses and their types in training and testing our CAD. The trained YOLO-based CAD system detects the masses and then classifies their types into benign or malignant. RESULTS Our results with five-fold cross validation tests show that the proposed CAD system detects the mass location with an overall accuracy of 99.7%. The system also distinguishes between benign and malignant lesions with an overall accuracy of 97%. CONCLUSIONS Our proposed system even works on some challenging breast cancer cases where the masses exist over the pectoral muscles or dense regions.
Collapse
Affiliation(s)
- Mohammed A Al-Masni
- Department of Biomedical Engineering, College of Electronics and Information, Kyung Hee University, Yongin, Republic of Korea.
| | - Mugahed A Al-Antari
- Department of Biomedical Engineering, College of Electronics and Information, Kyung Hee University, Yongin, Republic of Korea.
| | - Jeong-Min Park
- Department of Biomedical Engineering, College of Electronics and Information, Kyung Hee University, Yongin, Republic of Korea.
| | - Geon Gi
- Department of Biomedical Engineering, College of Electronics and Information, Kyung Hee University, Yongin, Republic of Korea.
| | - Tae-Yeon Kim
- Department of Biomedical Engineering, College of Electronics and Information, Kyung Hee University, Yongin, Republic of Korea.
| | - Patricio Rivera
- Department of Biomedical Engineering, College of Electronics and Information, Kyung Hee University, Yongin, Republic of Korea.
| | - Edwin Valarezo
- Department of Biomedical Engineering, College of Electronics and Information, Kyung Hee University, Yongin, Republic of Korea.
| | - Mun-Taek Choi
- School of Mechanical Engineering, Sungkyunkwan University, Republic of Korea.
| | - Seung-Moo Han
- Department of Biomedical Engineering, College of Electronics and Information, Kyung Hee University, Yongin, Republic of Korea.
| | - Tae-Seong Kim
- Department of Biomedical Engineering, College of Electronics and Information, Kyung Hee University, Yongin, Republic of Korea.
| |
Collapse
|
20
|
Involvement of Machine Learning for Breast Cancer Image Classification: A Survey. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2017; 2017:3781951. [PMID: 29463985 PMCID: PMC5804413 DOI: 10.1155/2017/3781951] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 10/26/2017] [Indexed: 11/17/2022]
Abstract
Breast cancer is one of the largest causes of women's death in the world today. Advance engineering of natural image classification techniques and Artificial Intelligence methods has largely been used for the breast-image classification task. The involvement of digital image classification allows the doctor and the physicians a second opinion, and it saves the doctors' and physicians' time. Despite the various publications on breast image classification, very few review papers are available which provide a detailed description of breast cancer image classification techniques, feature extraction and selection procedures, classification measuring parameterizations, and image classification findings. We have put a special emphasis on the Convolutional Neural Network (CNN) method for breast image classification. Along with the CNN method we have also described the involvement of the conventional Neural Network (NN), Logic Based classifiers such as the Random Forest (RF) algorithm, Support Vector Machines (SVM), Bayesian methods, and a few of the semisupervised and unsupervised methods which have been used for breast image classification.
Collapse
|
21
|
Midya A, Rabidas R, Sadhu A, Chakraborty J. Edge Weighted Local Texture Features for the Categorization of Mammographic Masses. J Med Biol Eng 2017. [DOI: 10.1007/s40846-017-0316-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
|
23
|
Rabidas R, Midya A, Chakraborty J. Neighborhood Structural Similarity Mapping for the Classification of Masses in Mammograms. IEEE J Biomed Health Inform 2017. [PMID: 28622679 DOI: 10.1109/jbhi.2017.2715021] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In this paper, two novel feature extraction methods, using neighborhood structural similarity (NSS), are proposed for the characterization of mammographic masses as benign or malignant. Since gray-level distribution of pixels is different in benign and malignant masses, more regular and homogeneous patterns are visible in benign masses compared to malignant masses; the proposed method exploits the similarity between neighboring regions of masses by designing two new features, namely, NSS-I and NSS-II, which capture global similarity at different scales. Complementary to these global features, uniform local binary patterns are computed to enhance the classification efficiency by combining with the proposed features. The performance of the features are evaluated using the images from the mini-mammographic image analysis society (mini-MIAS) and digital database for screening mammography (DDSM) databases, where a tenfold cross-validation technique is incorporated with Fisher linear discriminant analysis, after selecting the optimal set of features using stepwise logistic regression method. The best area under the receiver operating characteristic curve of 0.98 with an accuracy of is achieved with the mini-MIAS database, while the same for the DDSM database is 0.93 with accuracy .
Collapse
|