1
|
Aslan U, Akşahin MF. Enhancing multiple sclerosis diagnosis: A comparative study of electroencephalogram signal processing and entropy methods. Comput Biol Med 2025; 185:109615. [PMID: 39721414 DOI: 10.1016/j.compbiomed.2024.109615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/20/2024] [Accepted: 12/21/2024] [Indexed: 12/28/2024]
Abstract
As one of the most common neurodegenerative diseases, Multiple sclerosis (MS) is a chronic immune-driven disorder that affects the central nervous system (CNS). Due to the variety of symptoms, accurately diagnosing MS demands rigorous attention to differential diagnosis, as various disorders can closely mimic its clinical and paraclinical features. Although MR imaging techniques are gold standards in diagnosing MS, the feasibility of advanced Electroencephalogram (EEG) signal processing methods is discussed in this study to detect patients with MS disorder. EEG signals from 50 individuals were evaluated through entropy-based methods. Sixteen distinct entropy methods were employed to extract features, which were used to train several machine-learning algorithms for classifying MS patients. Furthermore, each entropy method was individually evaluated to identify the most effective approach for MS diagnosis. A regional analysis of the EEG channels was conducted to determine the most informative regions for classification. The results indicated that the proposed method outperformed previous studies and achieved highly effective results in the classification of MS patients.
Collapse
Affiliation(s)
- Umut Aslan
- Department of Electrical and Electronic Engineering, Gazi University, Ankara, Turkey.
| | - Mehmet Feyzi Akşahin
- Department of Electrical and Electronic Engineering, Gazi University, Ankara, Turkey
| |
Collapse
|
2
|
Ghasad PP, Vegivada JVS, Kamble VM, Bhurane AA, Santosh N, Sharma M, Tan RS, Rajendra Acharya U. A systematic review of automated prediction of sudden cardiac death using ECG signals. Physiol Meas 2025; 13:01TR01. [PMID: 39657316 DOI: 10.1088/1361-6579/ad9ce5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 12/10/2024] [Indexed: 12/12/2024]
Abstract
Background. Sudden cardiac death (SCD) stands as a life-threatening cardiac event capable of swiftly claiming lives. It ranks prominently among the leading causes of global mortality, contributing to approximately 10% of deaths worldwide. The timely anticipation of SCD holds the promise of immediate life-saving interventions, such as cardiopulmonary resuscitation. However, recent strides in the realms of deep learning (DL), machine learning (ML), and artificial intelligence have ushered in fresh opportunities for the automation of SCD prediction using physiological signals. Researchers have devised numerous models to automatically predict SCD using a combination of diverse feature extraction techniques and classifiers. Methods: We conducted a thorough review of research publications ranging from 2011 to 2023, with a specific focus on the automated prediction of SCD. Traditionally, specialists utilize molecular biomarkers, symptoms, and 12-lead ECG recordings for SCD prediction. However, continuous patient monitoring by experts is impractical, and only a fraction of patients seeks help after experiencing symptoms. However, over the past two decades, ML techniques have emerged and evolved for this purpose. Importantly, since 2021, the studies we have scrutinized delve into a diverse array of ML and DL algorithms, encompassing K-nearest neighbors, support vector machines, decision trees, random forest, Naive Bayes, and convolutional neural networks as classifiers.Results. This literature review presents a comprehensive analysis of ML and DL models employed in predicting SCD. The analysis provided valuable information on the fundamental structure of cardiac fatalities, extracting relevant characteristics from electrocardiogram (ECG) and heart rate variability (HRV) signals, using databases, and evaluating classifier performance. The review offers a succinct yet thorough examination of automated SCD prediction methodologies, emphasizing current constraints and underscoring the necessity for further advancements. It serves as a valuable resource, providing valuable insights and outlining potential research directions for aspiring scholars in the domain of SCD prediction.Conclusions. In recent years, researchers have made substantial strides in the prediction of SCD by leveraging openly accessible databases such as the MIT-BIH SCD Holter and Normal Sinus Rhythm, which contains extensive 24 h recordings of SCD patients. These sophisticated methodologies have previously demonstrated the potential to achieve remarkable accuracy, reaching levels as high as 97%, and can forecast SCD events with a lead time of 30-70 min. Despite these promising outcomes, the quest for even greater accuracy and reliability persists. ML and DL methodologies have shown great promise, their performance is intrinsically linked to the volume of training data available. Most predictive models rely on small-scale databases, raising concerns about their applicability in real-world scenarios. Furthermore, these models predominantly utilize ECG and HRV signals, often overlooking the potential contributions of other physiological signals. Developing real-time, clinically applicable models also represents a critical avenue for further exploration in this field.
Collapse
Affiliation(s)
- Preeti P Ghasad
- Department of Electronics and Communication Engineering, Visvesvaraya National Institute of Technology, Nagpur 440010, Maharashtra, India
| | - Jagath V S Vegivada
- Department of Electronics and Communication Engineering, Visvesvaraya National Institute of Technology, Nagpur 440010, Maharashtra, India
| | - Vipin M Kamble
- Department of Electronics and Communication Engineering, Visvesvaraya National Institute of Technology, Nagpur 440010, Maharashtra, India
| | - Ankit A Bhurane
- Department of Electronics and Communication Engineering, Visvesvaraya National Institute of Technology, Nagpur 440010, Maharashtra, India
| | - Nikhil Santosh
- Department of Electrical and Computer Science Engineering, Institute of Infrastructure Technology Research and Management, Ahmedabad 380026, Gujarat, India
| | - Manish Sharma
- Department of Electrical and Computer Science Engineering, Institute of Infrastructure Technology Research and Management, Ahmedabad 380026, Gujarat, India
| | - Ru-San Tan
- National Heart Centre Singapore, Duke-NUS Medical School, Singapore, Singapore
| | - U Rajendra Acharya
- School of Mathematics, Physics and Computing, University of Southern Queensland, Springfield, Australia
- Centre for Health Research, University of Southern Queensland, Springfield, Australia
- Department of Biomedical Informatics and Medical Engineering, Asia University, Taichung, Taiwan
| |
Collapse
|
3
|
Huang N, Lu H. Association between instantaneous heart rate sequence during the awake period and cardiovascular events: a study based on Sleep Heart Health Study. Minerva Cardiol Angiol 2024; 72:465-476. [PMID: 39254955 DOI: 10.23736/s2724-5683.24.06466-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
BACKGROUND Heart rate variability (HRV) has been reported to be associated with cardiovascular diseases (CVD), while few studies focused on the instantaneous heart rate (IHR). This study aimed to establish models to predict the occurrence of cardiovascular events based on the IHR sequence. METHODS A total of 2977 participants with useful electrocardiogram (ECG) data and free of CVD events at baseline from the Sleep Heart Health Study (SHHS) database were included in this retrospective cohort study. All IHR indicators were measured during the awake period before sleep. The logistic regression, random forest, and XGBoost methods were used to develop the predictive models. The model performance was quantified by calculating the area under the curve (AUC). RESULTS Of theses 2977 participants, 1460 (49.04%) participants had CVD events during the 15-year follow-up. Higher standard deviation of IHR (SDHR) (OR=0.906; 95% CI, 0.832-0.986), coefficient of variation of IHR (CVHR) (OR=0.910; 95% CI, 0.835-0.990), power in low frequency (LF) (OR=0.896; 95% CI, 0.822-0.975), power in high frequency (HF) (OR=0.872; 95% CI, 0.796-0.955), and total power (TP) (OR=0.887; 95% CI, 0.813-0.967) were associated with the lower risk of CVD events, while ratio of semi-minor axis and semi-major axis in Poincare plot (SDratio) (OR=1.105; 95% CI, 1.012-1.206) was related to the higher risk of CVD events. The AUCs of the logistic regression, random forest, and the XGBoost models were 0.734 (95% CI, 0.701-0.767), 0.794 (95% CI, 0.764-0.823) and 0.828 (95% CI, 0.801-0.855) in the testing set, respectively. CONCLUSIONS IHR sequences were important predictors of cardiovascular events. The IHR indicators should be paid more attention to in future clinical researches on CVD.
Collapse
Affiliation(s)
- Nan Huang
- Department of Cardiovascular Medicine, Liuzhou People's Hospital, Liuzhou, Guangxi, China -
| | - Haiou Lu
- Department of General Practice, Liuzhou People's Hospital, Liuzhou, Guangxi, China
| |
Collapse
|
4
|
Flanders WH, Moïse NS, Otani NF. Use of machine learning and Poincaré density grid in the diagnosis of sinus node dysfunction caused by sinoatrial conduction block in dogs. J Vet Intern Med 2024; 38:1305-1324. [PMID: 38682817 PMCID: PMC11099791 DOI: 10.1111/jvim.17071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/27/2024] [Indexed: 05/01/2024] Open
Abstract
BACKGROUND Sinus node dysfunction because of abnormal impulse generation or sinoatrial conduction block causes bradycardia that can be difficult to differentiate from high parasympathetic/low sympathetic modulation (HP/LSM). HYPOTHESIS Beat-to-beat relationships of sinus node dysfunction are quantifiably distinguishable by Poincaré plots, machine learning, and 3-dimensional density grid analysis. Moreover, computer modeling establishes sinoatrial conduction block as a mechanism. ANIMALS Three groups of dogs were studied with a diagnosis of: (1) balanced autonomic modulation (n = 26), (2) HP/LSM (n = 26), and (3) sinus node dysfunction (n = 21). METHODS Heart rate parameters and Poincaré plot data were determined [median (25%-75%)]. Recordings were randomly assigned to training or testing. Supervised machine learning of the training data was evaluated with the testing data. The computer model included impulse rate, exit block probability, and HP/LSM. RESULTS Confusion matrices illustrated the effectiveness in diagnosing by both machine learning and Poincaré density grid. Sinus pauses >2 s differentiated (P < .0001) HP/LSM (2340; 583-3947 s) from sinus node dysfunction (8503; 7078-10 050 s), but average heart rate did not. The shortest linear intervals were longer with sinus node dysfunction (315; 278-323 ms) vs HP/LSM (260; 251-292 ms; P = .008), but the longest linear intervals were shorter with sinus node dysfunction (620; 565-698 ms) vs HP/LSM (843; 799-888 ms; P < .0001). CONCLUSIONS Number and duration of pauses, not heart rate, differentiated sinus node dysfunction from HP/LSM. Machine learning and Poincaré density grid can accurately identify sinus node dysfunction. Computer modeling supports sinoatrial conduction block as a mechanism of sinus node dysfunction.
Collapse
Affiliation(s)
- Wyatt Hutson Flanders
- Department of Clinical Sciences, College of Veterinary MedicineCornell UniversityIthacaNew YorkUSA
| | - N. Sydney Moïse
- Section of Cardiology, Department of Clinical Sciences, College of Veterinary MedicineCornell UniversityIthacaNew YorkUSA
| | - Niels F. Otani
- School of Mathematical SciencesRochester Institute of TechnologyRochesterNew YorkUSA
| |
Collapse
|
5
|
Jain R, G RA. Modality-Specific Feature Selection, Data Augmentation and Temporal Context for Improved Performance in Sleep Staging. IEEE J Biomed Health Inform 2024; 28:1031-1042. [PMID: 38051608 DOI: 10.1109/jbhi.2023.3339713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
This work attempts to design an effective sleep staging system, making the best use of the available signals, strategies, and features in the literature. It must not only perform well on different datasets comprising healthy and clinical populations but also achieve good accuracy in cross-dataset experiments. Toward this end, we propose a model comprising multiple binary classifiers in a hierarchical fashion, where, at each level, one or more of EEG, EOG, and EMG are selected to best differentiate between two sleep stages. The best set of 100 features is chosen out of all the features derived from selected signals. The class imbalance in data is addressed by random undersampling and boosting techniques with decision trees as weak learners. Temporal context and data augmentation are used to improve the performance. We also evaluate the performance of our model by training and testing on different datasets. We compare the results of five approaches: using only EEG, EEG+EOG, EEG+EMG+EOG, EEG+EMG, and selective modality with a specific combination of EEG, EMG, and/or EOG at each level. The best results are obtained by considering features from EEG+EMG+EOG at each hierarchical level. The proposed model achieves average accuracies of 83.1%, 90.0%, 84.4%, 82.1%, 81.5%, 79.9%, and 73.7% on Sleep-EDF, Exp Sleep-EDF, ISRUC-S1, S2 and S3, DRMS-SUB, and DRMS-PAT datasets, respectively. For all the datasets except DRMS-SUB, the proposed method outperforms all the state-of-the-art approaches. Cross-dataset performance exceeds 80% for all datasets except DRMS-PAT; independent of whether the test data is from normal subjects or patients.
Collapse
|
6
|
Melnyk K, Friedman L, Komogortsev OV. What can entropy metrics tell us about the characteristics of ocular fixation trajectories? PLoS One 2024; 19:e0291823. [PMID: 38166054 PMCID: PMC10760742 DOI: 10.1371/journal.pone.0291823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 09/06/2023] [Indexed: 01/04/2024] Open
Abstract
In this study, we provide a detailed analysis of entropy measures calculated for fixation eye movement trajectories from the three different datasets. We employed six key metrics (Fuzzy, Increment, Sample, Gridded Distribution, Phase, and Spectral Entropies). We calculate these six metrics on three sets of fixations: (1) fixations from the GazeCom dataset, (2) fixations from what we refer to as the "Lund" dataset, and (3) fixations from our own research laboratory ("OK Lab" dataset). For each entropy measure, for each dataset, we closely examined the 36 fixations with the highest entropy and the 36 fixations with the lowest entropy. From this, it was clear that the nature of the information from our entropy metrics depended on which dataset was evaluated. These entropy metrics found various types of misclassified fixations in the GazeCom dataset. Two entropy metrics also detected fixation with substantial linear drift. For the Lund dataset, the only finding was that low spectral entropy was associated with what we call "bumpy" fixations. These are fixations with low-frequency oscillations. For the OK Lab dataset, three entropies found fixations with high-frequency noise which probably represent ocular microtremor. In this dataset, one entropy found fixations with linear drift. The between-dataset results are discussed in terms of the number of fixations in each dataset, the different eye movement stimuli employed, and the method of eye movement classification.
Collapse
Affiliation(s)
- Kateryna Melnyk
- Department of Computer Science, Texas State University, San Marcos, TX, United States of America
| | - Lee Friedman
- Department of Computer Science, Texas State University, San Marcos, TX, United States of America
| | - Oleg V. Komogortsev
- Department of Computer Science, Texas State University, San Marcos, TX, United States of America
| |
Collapse
|
7
|
Mayor D, Steffert T, Datseris G, Firth A, Panday D, Kandel H, Banks D. Complexity and Entropy in Physiological Signals (CEPS): Resonance Breathing Rate Assessed Using Measures of Fractal Dimension, Heart Rate Asymmetry and Permutation Entropy. ENTROPY (BASEL, SWITZERLAND) 2023; 25:301. [PMID: 36832667 PMCID: PMC9955651 DOI: 10.3390/e25020301] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/09/2023] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND As technology becomes more sophisticated, more accessible methods of interpretating Big Data become essential. We have continued to develop Complexity and Entropy in Physiological Signals (CEPS) as an open access MATLAB® GUI (graphical user interface) providing multiple methods for the modification and analysis of physiological data. METHODS To demonstrate the functionality of the software, data were collected from 44 healthy adults for a study investigating the effects on vagal tone of breathing paced at five different rates, as well as self-paced and un-paced. Five-minute 15-s recordings were used. Results were also compared with those from shorter segments of the data. Electrocardiogram (ECG), electrodermal activity (EDA) and Respiration (RSP) data were recorded. Particular attention was paid to COVID risk mitigation, and to parameter tuning for the CEPS measures. For comparison, data were processed using Kubios HRV, RR-APET and DynamicalSystems.jl software. We also compared findings for ECG RR interval (RRi) data resampled at 4 Hz (4R) or 10 Hz (10R), and non-resampled (noR). In total, we used around 190-220 measures from CEPS at various scales, depending on the analysis undertaken, with our investigation focused on three families of measures: 22 fractal dimension (FD) measures, 40 heart rate asymmetries or measures derived from Poincaré plots (HRA), and 8 measures based on permutation entropy (PE). RESULTS FDs for the RRi data differentiated strongly between breathing rates, whether data were resampled or not, increasing between 5 and 7 breaths per minute (BrPM). Largest effect sizes for RRi (4R and noR) differentiation between breathing rates were found for the PE-based measures. Measures that both differentiated well between breathing rates and were consistent across different RRi data lengths (1-5 min) included five PE-based (noR) and three FDs (4R). Of the top 12 measures with short-data values consistently within ± 5% of their values for the 5-min data, five were FDs, one was PE-based, and none were HRAs. Effect sizes were usually greater for CEPS measures than for those implemented in DynamicalSystems.jl. CONCLUSION The updated CEPS software enables visualisation and analysis of multichannel physiological data using a variety of established and recently introduced complexity entropy measures. Although equal resampling is theoretically important for FD estimation, it appears that FD measures may also be usefully applied to non-resampled data.
Collapse
Affiliation(s)
- David Mayor
- School of Health and Social Work, University of Hertfordshire, Hatfield AL10 9AB, UK
| | - Tony Steffert
- MindSpire, Napier House, 14–16 Mount Ephraim Rd., Tunbridge Wells TN1 1EE, UK
- School of Life, Health and Chemical Sciences, STEM, Walton Hall, The Open University, Milton Keynes MK7 6AA, UK
| | - George Datseris
- Department of Mathematics and Statistics, University of Exeter, North Park Road, Exeter EX4 4QF, UK
| | - Andrea Firth
- University Campus Football Business, Wembley HA9 0WS, UK
| | - Deepak Panday
- School of Engineering and Computer Science, University of Hertfordshire, Hatfield AL10 9AB, UK
| | - Harikala Kandel
- Department of Computer Science and Information Systems, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | - Duncan Banks
- School of Life, Health and Chemical Sciences, STEM, Walton Hall, The Open University, Milton Keynes MK7 6AA, UK
- Department of Physiology, Busitema University, Mbale P.O. Box 1966, Uganda
| |
Collapse
|
8
|
Kalauzi A, Matić Z, Bojić T, Platiša MM. Structure of Poincaré plots revealed by their graph analysis and low pass filtering of the RRI time series. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
9
|
The nonlinearity properties of pulse signal of pregnancy in the three trimesters. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Jain R, Ganesan RA. Assessment of submentalis muscle activity for sleep-wake classification of healthy individuals and patients with sleep disorders. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:4942-4945. [PMID: 36085976 DOI: 10.1109/embc48229.2022.9871693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This work proposes a method utilizing only the submentalis EMG channel for the classification of sleep and wake states among the healthy individuals and patients with various sleep disorders such as sleep apnea hypopnea syndrome, dyssomnia, etc. We extracted autoregressive model parameters, discrete wavelet transform coefficients, Hjorth's complexity and mobility, relative bandpowers, Poincaré plot descriptors and statistical features from the EMG signal. We also used the energy of each epoch as a feature to distinguish between the sleep and wake states. Mutual information based feature selection approach was considered to obtain the top 25 features which provided maximum accuracy. For classification, we employed an ensemble of decision trees with random undersampling and boosting technique to deal with the class-imbalance problem in the sleep data. We achieved an overall accuracy of about 85% for the healthy population and about 70% on an average across different pathological groups. This work shows the potential of EMG chin activity for sleep analysis. Clinical Relevance- Automatic and reliable sleep-wake classification can reduce the burden of sleep experts in analyzing overnight sleep data (~ 8 hours) and also assist them to diagnose various neurological disorders at an early stage. Utilizing EMG channel provides an easier and convenient long-term recording of data without causing much disturbance in sleepunlike EEG which is inconvenient and hampers the natural sleep.
Collapse
|
11
|
Wu L, Hu S, Liu C. MR brain segmentation based on DE-ResUnet combining texture features and background knowledge. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2022.103541] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
12
|
Savari C, Sheikh HA, Barigou M. Lagrangian Recurrence Tracking: A Novel Approach for Description of Mixing in Liquid and Particle–Liquid Flows. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c04101] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chiya Savari
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| | - Hamzah A. Sheikh
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| | - Mostafa Barigou
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| |
Collapse
|
13
|
Flood MW, Grimm B. EntropyHub: An open-source toolkit for entropic time series analysis. PLoS One 2021; 16:e0259448. [PMID: 34735497 PMCID: PMC8568273 DOI: 10.1371/journal.pone.0259448] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/18/2021] [Indexed: 11/24/2022] Open
Abstract
An increasing number of studies across many research fields from biomedical engineering to finance are employing measures of entropy to quantify the regularity, variability or randomness of time series and image data. Entropy, as it relates to information theory and dynamical systems theory, can be estimated in many ways, with newly developed methods being continuously introduced in the scientific literature. Despite the growing interest in entropic time series and image analysis, there is a shortage of validated, open-source software tools that enable researchers to apply these methods. To date, packages for performing entropy analysis are often run using graphical user interfaces, lack the necessary supporting documentation, or do not include functions for more advanced entropy methods, such as cross-entropy, multiscale cross-entropy or bidimensional entropy. In light of this, this paper introduces EntropyHub, an open-source toolkit for performing entropic time series analysis in MATLAB, Python and Julia. EntropyHub (version 0.1) provides an extensive range of more than forty functions for estimating cross-, multiscale, multiscale cross-, and bidimensional entropy, each including a number of keyword arguments that allows the user to specify multiple parameters in the entropy calculation. Instructions for installation, descriptions of function syntax, and examples of use are fully detailed in the supporting documentation, available on the EntropyHub website- www.EntropyHub.xyz. Compatible with Windows, Mac and Linux operating systems, EntropyHub is hosted on GitHub, as well as the native package repository for MATLAB, Python and Julia, respectively. The goal of EntropyHub is to integrate the many established entropy methods into one complete resource, providing tools that make advanced entropic time series analysis straightforward and reproducible.
Collapse
Affiliation(s)
- Matthew W. Flood
- Human Motion, Orthopaedics, Sports Medicine and Digital Methods (HOSD), Luxembourg Institute of Health (LIH), Eich, Luxembourg
| | - Bernd Grimm
- Human Motion, Orthopaedics, Sports Medicine and Digital Methods (HOSD), Luxembourg Institute of Health (LIH), Eich, Luxembourg
| |
Collapse
|
14
|
Yan C, Liu C, Yao L, Wang X, Wang J, Li P. Short-Term Effect of Percutaneous Coronary Intervention on Heart Rate Variability in Patients with Coronary Artery Disease. ENTROPY 2021; 23:e23050540. [PMID: 33924819 PMCID: PMC8146536 DOI: 10.3390/e23050540] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/25/2021] [Accepted: 04/26/2021] [Indexed: 01/18/2023]
Abstract
Myocardial ischemia in patients with coronary artery disease (CAD) leads to imbalanced autonomic control that increases the risk of morbidity and mortality. To systematically examine how autonomic function responds to percutaneous coronary intervention (PCI) treatment, we analyzed data of 27 CAD patients who had admitted for PCI in this pilot study. For each patient, five-minute resting electrocardiogram (ECG) signals were collected before and after the PCI procedure. The time intervals between ECG collection and PCI were both within 24 h. To assess autonomic function, normal sinus RR intervals were extracted and were analyzed quantitatively using traditional linear time- and frequency-domain measures [i.e., standard deviation of the normal-normal intervals (SDNN), the root mean square of successive differences (RMSSD), powers of low frequency (LF) and high frequency (HF) components, LF/HF] and nonlinear entropy measures [i.e., sample entropy (SampEn), distribution entropy (DistEn), and conditional entropy (CE)], as well as graphical metrics derived from Poincaré plot [i.e., Porta’s index (PI), Guzik’s index (GI), slope index (SI) and area index (AI)]. Results showed that after PCI, AI and PI decreased significantly (p < 0.002 and 0.015, respectively) with effect sizes of 0.88 and 0.70 as measured by Cohen’s d static. These changes were independent of sex. The results suggest that graphical AI and PI metrics derived from Poincaré plot of short-term ECG may be potential for sensing the beneficial effect of PCI on cardiovascular autonomic control. Further studies with bigger sample sizes are warranted to verify these observations.
Collapse
Affiliation(s)
- Chang Yan
- School of Control Science and Engineering, Shandong University, Jinan 250061, China; (C.Y.); (L.Y.); (X.W.); (J.W.)
| | - Changchun Liu
- School of Control Science and Engineering, Shandong University, Jinan 250061, China; (C.Y.); (L.Y.); (X.W.); (J.W.)
- Correspondence: (C.L.); (P.L.)
| | - Lianke Yao
- School of Control Science and Engineering, Shandong University, Jinan 250061, China; (C.Y.); (L.Y.); (X.W.); (J.W.)
| | - Xinpei Wang
- School of Control Science and Engineering, Shandong University, Jinan 250061, China; (C.Y.); (L.Y.); (X.W.); (J.W.)
| | - Jikuo Wang
- School of Control Science and Engineering, Shandong University, Jinan 250061, China; (C.Y.); (L.Y.); (X.W.); (J.W.)
| | - Peng Li
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Correspondence: (C.L.); (P.L.)
| |
Collapse
|
15
|
Montoya A, Habtour E, Moreu F. Quantifying Information without Entropy: Identifying Intermittent Disturbances in Dynamical Systems. ENTROPY 2020; 22:e22111199. [PMID: 33286967 PMCID: PMC7712588 DOI: 10.3390/e22111199] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/18/2020] [Accepted: 10/19/2020] [Indexed: 11/23/2022]
Abstract
A system’s response to disturbances in an internal or external driving signal can be characterized as performing an implicit computation, where the dynamics of the system are a manifestation of its new state holding some memory about those disturbances. Identifying small disturbances in the response signal requires detailed information about the dynamics of the inputs, which can be challenging. This paper presents a new method called the Information Impulse Function (IIF) for detecting and time-localizing small disturbances in system response data. The novelty of IIF is its ability to measure relative information content without using Boltzmann’s equation by modeling signal transmission as a series of dissipative steps. Since a detailed expression of the informational structure in the signal is achieved with IIF, it is ideal for detecting disturbances in the response signal, i.e., the system dynamics. Those findings are based on numerical studies of the topological structure of the dynamics of a nonlinear system due to perturbated driving signals. The IIF is compared to both the Permutation entropy and Shannon entropy to demonstrate its entropy-like relationship with system state and its degree of sensitivity to perturbations in a driving signal.
Collapse
Affiliation(s)
- Angela Montoya
- Sandia National Laboratories, Albuquerque, NM 87185, USA;
| | - Ed Habtour
- William E. Boeing Department of Aeronautics & Astronautics, University of Washington, Seattle, WA 98195, USA;
| | - Fernando Moreu
- Department of Civil, Construction, & Environmental Engineering, University of New Mexico, Albuquerque, NM 87131, USA
- Correspondence: ; Tel.: +1-217-417-1204
| |
Collapse
|
16
|
|
17
|
Detection of sudden cardiac death by a comparative study of heart rate variability in normal and abnormal heart conditions. Biocybern Biomed Eng 2020. [DOI: 10.1016/j.bbe.2020.06.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
18
|
Gao L, Lim ASP, Wong PM, Gaba A, Cui L, Yu L, Buchman AS, Bennett DA, Hu K, Li P. Fragmentation of Rest/Activity Patterns in Community-Based Elderly Individuals Predicts Incident Heart Failure. Nat Sci Sleep 2020; 12:299-307. [PMID: 32581616 PMCID: PMC7266944 DOI: 10.2147/nss.s253757] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
STUDY OBJECTIVES Heart failure has previously been linked to sleep disorders that are often associated with frequent disturbances to human rest/activity patterns. We tested whether fragmentation of sustained rest/activity patterns derived from actigraphic recordings at baseline predicts incident heart failure in community-based elderly individuals. METHODS We studied 1099 community-based elderly adults participating in the Rush Memory and Aging Project who had baseline motor activity monitoring up to 11 days and were followed annually for up to 14 years. Fragmentation was assessed using previously validated indexes, derived from the probability of transitions once sustained rest or activity has been established. Heart failure was recorded via a clinical interview during the annual follow-up. Cox proportional hazards models were constructed to examine the relationship between rest fragmentation index and incident heart failure. Covariates grouped in terms of demographics, lifestyle factors and co-morbidities and cardiovascular risk factors/diseases were included. RESULTS Increased rest fragmentation (but not activity fragmentation) was associated with higher risk for incident heart failure. Specifically, a subject with a rest fragmentation at the 90th percentile showed a 57% increased risk of developing incident heart failure compared to a subject at the 10th percentile in this cohort. This effect was equivalent to that of being over a decade older. These observations were consistent after adjusting for all covariates. CONCLUSION Increased rest fragmentation, a potential surrogate for sleep fragmentation, is independently associated with a higher risk of developing heart failure in community-based elderly adults during up to 14 years of follow-up. Further work is required to examine the specific contributions from daytime napping versus nighttime sleep periods in the elderly, as well as the underlying autonomic and cardio-dynamic pathways that may explain the effects on heart function.
Collapse
Affiliation(s)
- Lei Gao
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.,Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Andrew S P Lim
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, USA
| | - Patricia M Wong
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Arlen Gaba
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Longchang Cui
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Lei Yu
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL 60612, USA
| | - Aron S Buchman
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL 60612, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL 60612, USA
| | - Kun Hu
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA 02115, USA.,Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Peng Li
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA 02115, USA.,Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
19
|
Hierarchical Poincaré analysis for anaesthesia monitoring. J Clin Monit Comput 2019; 34:1321-1330. [DOI: 10.1007/s10877-019-00447-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 12/14/2019] [Indexed: 02/07/2023]
|
20
|
Rohila A, Sharma A. Phase entropy: a new complexity measure for heart rate variability. Physiol Meas 2019; 40:105006. [PMID: 31574498 DOI: 10.1088/1361-6579/ab499e] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Information entropy is generally employed for analysing the complexity of physiological signals. However, most definitions of entropy estimate the degree of compressibility and thus quantify the randomness. Physiological signals are very complex because of nonlinear relationships and interactions between various systems and subsystems of the body. Therefore, analysis of randomness may not be sufficient to describe this complexity. To analyse the complexity of heart rate variability (HRV), a new entropy method, phase entropy (PhEn), has been proposed as a quantification of two-dimensional phase space. APPROACH The second-order difference plot (SODP), a two-dimensional phase space, provides a visual summary of the rate of variability. The distribution of scatter points in a SODP provides information about the dynamics of the underlying system. PhEn estimates the Shannon entropy of the weighted distribution in a coarse-grained SODP. MAIN RESULTS The performance of PhEn has been evaluated using simulated signals, synthetic HRV signals and real HRV signals. PhEn shows a better discriminating power and stability than other entropy measures. It is computationally efficient. Moreover, it has the ability to assess temporal asymmetry of physiological signals. SIGNIFICANCE PhEn quantifies the multiplicity and rate of variability associated with physiological signals. It is sensitive to time irreversibility. Therefore, it appears to be a promising tool for analysing physiological signals such as HRV.
Collapse
|