1
|
Älmqvist Nae J, Nyström A, Luccini F, Magnusson M, Ekvall Hansson E. Video exposure through virtual reality can improve older people's ability to manage postural instability caused by distortive visual environments. PLoS One 2024; 19:e0306834. [PMID: 39167614 PMCID: PMC11338449 DOI: 10.1371/journal.pone.0306834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/24/2024] [Indexed: 08/23/2024] Open
Abstract
In older adults, age-related degenerative processes and disorders often degrade some sensory systems more than others, which can make postural control disproportionally dependent on one kind of sensory information. The study aims were to investigate 1) the postural stability when healthy older adults were repeatedly exposed to a video in an immersive virtual reality (VR) environment, and 2) the relationship between stability during VR video exposure and self-reported physical activity, balance confidence, and nausea during VR. Twenty-seven older adults (18 females, mean age 71.3 years (SD 4.4)) watched a 120-second VR video 5 times with 10 minutes between sessions, while standing on a force platform recording their stability. The first VR video session produced a marked stability challenge, reflected by significantly increased use of anteroposterior and lateral total (p<0.001) and high frequency (p<0.001) energy compared with the control test quiet stance eyes open. However, repeated VR video sessions produced a multidimensional decrease in used total (p<0.001), low (p = 0.002), and high frequency energy (p<0.001). Participants used more energy in anteroposterior compared with lateral direction across sessions within all spectral ranges (p<0.001). Participants with higher physical activity level used less low frequency energy in anteroposterior direction during VR video session 1 (p = 0.033). No association was seen between balance confidence or nausea during VR and energy used during VR video sessions 1 and 5. Healthy older adults adapt fast to distortive visual environments, and thus, CNS can utilize the information provided by a few repeated VR video sessions into suitable movement strategies that have a simultaneous multidimensionally positive effect. VR may introduce numerous opportunities to customize novel rehabilitation approaches to address when the visual system causes and/or suffers from issues. However, a common problem for the older adult was that about 33% of the participants became nauseated by the VR video stimuli.
Collapse
Affiliation(s)
| | - Anastasia Nyström
- Department of Otorhinolaryngology Head and Neck Surgery, Skåne University Hospital, Lund, Sweden
| | - Francesca Luccini
- Department of Behavioral Sciences and Learning, Linköping University, Linköping, Sweden
| | - Måns Magnusson
- Department of Otorhinolaryngology Head and Neck Surgery, Skåne University Hospital, Lund, Sweden
- Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Eva Ekvall Hansson
- Department of Health Sciences, Lund University, Lund, Sweden
- Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| |
Collapse
|
2
|
Morton A, Fraser H, Green C, Drovandi A. Effectiveness of Deep Brain Stimulation in Improving Balance in Parkinson's Disease: A Systematic Review and Meta-Analysis. World Neurosurg 2024; 186:242-251.e3. [PMID: 38608807 DOI: 10.1016/j.wneu.2024.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024]
Abstract
BACKGROUND Balance dysfunction is a debilitating feature of advanced Parkinson's disease (PD), potentially improved by deep brain stimulation (DBS). This systematic review and meta-analysis pooled evidence from randomized controlled trials (RCTs) on DBS effectiveness in improving balance in PD. METHODS A systematic search was conducted to identify eligible RCTs investigating the effectiveness of DBS on improving balance in people with PD. Meta-analysis was performed using random effects models and reported as mean difference and 95% confidence intervals. Risk of bias was assessed using Cochrane's ROB-2 tool. RESULTS Seventeen RCTs were eligible (n = 333), utilizing a range of stimulation sites, parameters, reporting tools for balance outcomes, and control/comparator groups, making the identification of clear trends and recommendations difficult. Eleven studies were deemed as having some risk of bias, 4 having low risk of bias and 2 having high risk of bias. One small meta-analysis was conducted and found no significant difference in balance outcomes. Most studies reported no significant improvement in Timed Up-and-Go scores, Berg Balance Scale scores, frequency of falls, and balance-related items of the Movement Disorder Society's Unified Parkinson's Disease Rating Scales. Some studies reported improvements in the Tinetti balance test, posturography readings, and reduction in falls though these were not supported by other studies due to a lack of reporting on these items or conflicting findings. CONCLUSIONS Current research suggests that DBS results in no significant improvement in balance dysfunction for people with PD, though such assertions require larger RCTs with clear reporting methods using validated reporting tools.
Collapse
Affiliation(s)
- Amy Morton
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Holly Fraser
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Chloe Green
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Aaron Drovandi
- School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
3
|
Heß T, Themann P, Oehlwein C, Milani TL. Does Impaired Plantar Cutaneous Vibration Perception Contribute to Axial Motor Symptoms in Parkinson's Disease? Effects of Medication and Subthalamic Nucleus Deep Brain Stimulation. Brain Sci 2023; 13:1681. [PMID: 38137129 PMCID: PMC10742284 DOI: 10.3390/brainsci13121681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/28/2023] [Accepted: 12/03/2023] [Indexed: 12/24/2023] Open
Abstract
OBJECTIVE To investigate whether impaired plantar cutaneous vibration perception contributes to axial motor symptoms in Parkinson's disease (PD) and whether anti-parkinsonian medication and subthalamic nucleus deep brain stimulation (STN-DBS) show different effects. METHODS Three groups were evaluated: PD patients in the medication "on" state (PD-MED), PD patients in the medication "on" state and additionally "on" STN-DBS (PD-MED-DBS), as well as healthy subjects (HS) as reference. Motor performance was analyzed using a pressure distribution platform. Plantar cutaneous vibration perception thresholds (VPT) were investigated using a customized vibration exciter at 30 Hz. RESULTS Motor performance of PD-MED and PD-MED-DBS was characterized by greater postural sway, smaller limits of stability ranges, and slower gait due to shorter strides, fewer steps per minute, and broader stride widths compared to HS. Comparing patient groups, PD-MED-DBS showed better overall motor performance than PD-MED, particularly for the functional limits of stability and gait. VPTs were significantly higher for PD-MED compared to those of HS, which suggests impaired plantar cutaneous vibration perception in PD. However, PD-MED-DBS showed less impaired cutaneous vibration perception than PD-MED. CONCLUSIONS PD patients suffer from poor motor performance compared to healthy subjects. Anti-parkinsonian medication in tandem with STN-DBS seems to be superior for normalizing axial motor symptoms compared to medication alone. Plantar cutaneous vibration perception is impaired in PD patients, whereas anti-parkinsonian medication together with STN-DBS is superior for normalizing tactile cutaneous perception compared to medication alone. Consequently, based on our results and the findings of the literature, impaired plantar cutaneous vibration perception might contribute to axial motor symptoms in PD.
Collapse
Affiliation(s)
- Tobias Heß
- Department of Human Locomotion, Chemnitz University of Technology, 09126 Chemnitz, Germany
| | - Peter Themann
- Department of Neurology and Parkinson, Clinic at Tharandter Forest, 09633 Halsbruecke, Germany
| | - Christian Oehlwein
- Neurological Outpatient Clinic for Parkinson Disease and Deep Brain Stimulation, 07551 Gera, Germany
| | - Thomas L. Milani
- Department of Human Locomotion, Chemnitz University of Technology, 09126 Chemnitz, Germany
| |
Collapse
|
4
|
Leodori G, Santilli M, Modugno N, D’Avino M, De Bartolo MI, Fabbrini A, Rocchi L, Conte A, Fabbrini G, Belvisi D. Postural Instability and Risk of Falls in Patients with Parkinson's Disease Treated with Deep Brain Stimulation: A Stabilometric Platform Study. Brain Sci 2023; 13:1243. [PMID: 37759844 PMCID: PMC10526843 DOI: 10.3390/brainsci13091243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
Postural instability (PI) in Parkinson's disease (PD) exposes patients to an increased risk of falls (RF). While dopaminergic therapy and deep brain stimulation (DBS) improve motor performance in advanced PD patients, their effects on PI and RF remain elusive. PI and RF were assessed using a stabilometric platform in six advanced PD patients. Patients were evaluated in OFF and ON dopaminergic medication and under four DBS settings: with DBS off, DBS bilateral, and unilateral DBS of the more- or less-affected side. Our findings indicate that dopaminergic medication by itself exacerbated PI and RF, and DBS alone led to a decline in RF. No combination of medication and DBS yielded a superior improvement in postural control compared to the baseline combination of OFF medication and the DBS-off condition. Yet, for ON medication, DBS significantly improved both PI and RF. Among DBS conditions, DBS bilateral provided the most favorable outcomes, improving PI and RF in the ON medication state and presenting the smallest setbacks in the OFF state. Conversely, the more-affected side DBS was less beneficial. These preliminary results could inform therapeutic strategies for advanced PD patients experiencing postural disorders.
Collapse
Affiliation(s)
- Giorgio Leodori
- IRCCS Neuromed, 86077 Pozzilli, Italy; (G.L.); (M.S.); (N.M.); (M.D.); (A.C.); (D.B.)
- Department of Human Neuroscience, University of Rome “Sapienza”, 00185 Rome, Italy; (M.I.D.B.); (A.F.)
| | - Marco Santilli
- IRCCS Neuromed, 86077 Pozzilli, Italy; (G.L.); (M.S.); (N.M.); (M.D.); (A.C.); (D.B.)
| | - Nicola Modugno
- IRCCS Neuromed, 86077 Pozzilli, Italy; (G.L.); (M.S.); (N.M.); (M.D.); (A.C.); (D.B.)
| | - Michele D’Avino
- IRCCS Neuromed, 86077 Pozzilli, Italy; (G.L.); (M.S.); (N.M.); (M.D.); (A.C.); (D.B.)
| | - Maria Ilenia De Bartolo
- Department of Human Neuroscience, University of Rome “Sapienza”, 00185 Rome, Italy; (M.I.D.B.); (A.F.)
| | - Andrea Fabbrini
- Department of Human Neuroscience, University of Rome “Sapienza”, 00185 Rome, Italy; (M.I.D.B.); (A.F.)
| | - Lorenzo Rocchi
- Department of Medical Sciences and Public Health, University of Cagliari, 09042 Cagliari, Italy;
| | - Antonella Conte
- IRCCS Neuromed, 86077 Pozzilli, Italy; (G.L.); (M.S.); (N.M.); (M.D.); (A.C.); (D.B.)
- Department of Human Neuroscience, University of Rome “Sapienza”, 00185 Rome, Italy; (M.I.D.B.); (A.F.)
| | - Giovanni Fabbrini
- IRCCS Neuromed, 86077 Pozzilli, Italy; (G.L.); (M.S.); (N.M.); (M.D.); (A.C.); (D.B.)
- Department of Human Neuroscience, University of Rome “Sapienza”, 00185 Rome, Italy; (M.I.D.B.); (A.F.)
| | - Daniele Belvisi
- IRCCS Neuromed, 86077 Pozzilli, Italy; (G.L.); (M.S.); (N.M.); (M.D.); (A.C.); (D.B.)
- Department of Human Neuroscience, University of Rome “Sapienza”, 00185 Rome, Italy; (M.I.D.B.); (A.F.)
| |
Collapse
|
5
|
Heß T, Oehlwein C, Milani TL. Anticipatory Postural Adjustments and Compensatory Postural Responses to Multidirectional Perturbations-Effects of Medication and Subthalamic Nucleus Deep Brain Stimulation in Parkinson's Disease. Brain Sci 2023; 13:brainsci13030454. [PMID: 36979264 PMCID: PMC10046463 DOI: 10.3390/brainsci13030454] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND Postural instability is one of the most restricting motor symptoms for patients with Parkinson's disease (PD). While medication therapy only shows minor effects, it is still unclear whether medication in conjunction with deep brain stimulation (DBS) of the subthalamic nucleus (STN) improves postural stability. Hence, the aim of this study was to investigate whether PD patients treated with medication in conjunction with STN-DBS have superior postural control compared to patients treated with medication alone. METHODS Three study groups were tested: PD patients on medication (PD-MED), PD patients on medication and on STN-DBS (PD-MED-DBS), and healthy elderly subjects (HS) as a reference. Postural performance, including anticipatory postural adjustments (APA) prior to perturbation onset and compensatory postural responses (CPR) following multidirectional horizontal perturbations, was analyzed using force plate and electromyography data. RESULTS Regardless of the treatment condition, both patient groups showed inadequate APA and CPR with early and pronounced antagonistic muscle co-contractions compared to healthy elderly subjects. Comparing the treatment conditions, study group PD-MED-DBS only showed minor advantages over group PD-MED. In particular, group PD-MED-DBS showed faster postural reflexes and tended to have more physiological co-contraction ratios. CONCLUSION medication in conjunction with STN-DBS may have positive effects on the timing and amplitude of postural control.
Collapse
Affiliation(s)
- Tobias Heß
- Department of Human Locomotion, Chemnitz University of Technology, 09126 Chemnitz, Germany
| | - Christian Oehlwein
- Neurological Outpatient Clinic for Parkinson Disease and Deep Brain Stimulation, 07551 Gera, Germany
| | - Thomas L Milani
- Department of Human Locomotion, Chemnitz University of Technology, 09126 Chemnitz, Germany
| |
Collapse
|
6
|
Nagahawatte ND, Paskaranandavadivel N, Bear LR, Avci R, Cheng LK. A novel framework for the removal of pacing artifacts from bio-electrical recordings. Comput Biol Med 2023; 155:106673. [PMID: 36805227 DOI: 10.1016/j.compbiomed.2023.106673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/23/2023] [Accepted: 02/10/2023] [Indexed: 02/13/2023]
Abstract
BACKGROUND Electroceuticals provide clinical solutions for a range of disorders including Parkinson's disease, cardiac arrythmias and are emerging as a potential treatment option for gastrointestinal disorders. However, pre-clinical investigations are challenged by the large stimulation artifacts registered in bio-electrical recordings. METHOD A generalized framework capable of isolating and suppressing stimulation artifacts with minimal intervention was developed. Stimulation artifacts with different pulse-parameters in synthetic and experimental cardiac and gastrointestinal signals were detected using a Hampel filter and reconstructed using 3 methods: i) autoregression, ii) weighted mean, and iii) linear interpolation. RESULTS Synthetic stimulation artifacts with amplitudes of 2 mV and 4 mV and pulse-widths of 50 ms, 100 ms, and 200 ms were successfully isolated and the artifact window size remained uninfluenced by the pulse-amplitude, but was influenced by pulse-width (e.g., the autoregression method resulted in an identical Root Mean Square Error (RMSE) of 1.64 mV for artifacts with 200 ms pulse-width and both 2 mV and 4 mV amplitudes). The performance of autoregression (RMSE = 1.45 ± 0.16 mV) and linear interpolation (RMSE = 1.22 ± 0.14 mV) methods were comparable and better than weighted mean (RMSE = 5.54 ± 0.56 mV) for synthetic data. However, for experimental recordings, artifact removal by autoregression was superior to both linear interpolation and weighted mean approaches in gastric, small intestinal and cardiac recordings. CONCLUSIONS A novel signal processing framework enabled efficient analysis of bio-electrical recordings with stimulation artifacts. This will allow the bio-electrical events induced by stimulation protocols to be efficiently and systematically evaluated, resulting in improved stimulation therapies.
Collapse
Affiliation(s)
- Nipuni D Nagahawatte
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | | | - Laura R Bear
- IHU Liryc, Fondation Bordeaux Université, F-33600, Pessac-Bordeaux, France; INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, F-33000, Bordeaux, France; Université de Bordeaux, CRCTB, U1045, F-33000, Bordeaux, France
| | - Recep Avci
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Leo K Cheng
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand; Department of Surgery, Vanderbilt University, Nashville, TN, USA; Riddet Institute Centre of Research Excellence, Palmerston North, New Zealand.
| |
Collapse
|
7
|
Warmerdam E, Schumacher M, Beyer T, Nerdal PT, Schebesta L, Stürner KH, Zeuner KE, Hansen C, Maetzler W. Postural Sway in Parkinson's Disease and Multiple Sclerosis Patients During Tasks With Different Complexity. Front Neurol 2022; 13:857406. [PMID: 35422747 PMCID: PMC9001932 DOI: 10.3389/fneur.2022.857406] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/09/2022] [Indexed: 11/13/2022] Open
Abstract
Neurological diseases are associated with static postural instability. Differences in postural sway between neurological diseases could include "conceptual" information about how certain symptoms affect static postural stability. This information might have the potential to become a helpful aid during the process of finding the most appropriate treatment and training program. Therefore, this study investigated static postural sway performance of Parkinson's disease (PD) and multiple sclerosis (MS) patients, as well as of a cohort of healthy adults. Three increasingly difficult static postural tasks were performed, in order to determine whether the postural strategies of the two disease groups differ in response to the increased complexity of the balance task. Participants had to perform three stance tasks (side-by-side, semi-tandem and tandem stance) and maintain these positions for 10 s. Seven static sway parameters were extracted from an inertial measurement unit that participants wore on the lower back. Data of 47 healthy adults, 14 PD patients and 8 MS patients were analyzed. Both healthy adults and MS patients showed a substantial increase in several static sway parameters with increasingly complex stance tasks, whereas PD patients did not. In the MS patients, the observed substantial change was driven by large increases from semi-tandem and tandem stance. This study revealed differences in static sway adaptations between PD and MS patients to increasingly complex stance tasks. Therefore, PD and MS patients might require different training programs to improve their static postural stability. Moreover, this study indicates, at least indirectly, that rigidity/bradykinesia and spasticity lead to different adaptive processes in static sway.
Collapse
Affiliation(s)
- Elke Warmerdam
- Department of Neurology, Kiel University, Kiel, Germany
- Innovative Implant Development (Fracture Healing), Division of Surgery, Saarland University, Homburg, Germany
| | | | - Thorben Beyer
- Department of Neurology, Kiel University, Kiel, Germany
| | | | | | | | | | - Clint Hansen
- Department of Neurology, Kiel University, Kiel, Germany
| | | |
Collapse
|
8
|
Patel M, Nilsson MH, Rehncrona S, Tjernström F, Magnusson M, Johansson R, Fransson PA. Strategic alterations of posture are delayed in Parkinson's disease patients during deep brain stimulation. Sci Rep 2021; 11:23550. [PMID: 34876604 PMCID: PMC8651728 DOI: 10.1038/s41598-021-02813-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 11/22/2021] [Indexed: 11/09/2022] Open
Abstract
Parkinson’s disease (PD) is characterized by rigidity, akinesia, postural instability and tremor. Deep brain stimulation (DBS) of the subthalamic nucleus (STN) reduces tremor but the effects on postural instability are inconsistent. Another component of postural control is the postural strategy, traditionally referred to as the ankle or hip strategy, which is determined by the coupling between the joint motions of the body. We aimed to determine whether DBS STN and vision (eyes open vs. eyes closed) affect the postural strategy in PD in quiet stance or during balance perturbations. Linear motion was recorded from the knee, hip, shoulder and head in 10 patients with idiopathic PD with DBS STN (after withdrawal of other anti-PD medication), 25 younger adult controls and 17 older adult controls. Correlation analyses were performed on anterior–posterior linear motion data to determine the coupling between the four positions measured. All participants were asked to stand for a 30 s period of quiet stance and a 200 s period of calf vibration. The 200 s vibration period was subdivided into four 50 s periods to study adaptation between the first vibration period (30–80 s) and the last vibration period (180–230 s). Movement was recorded in patients with PD with DBS ON and DBS OFF, and all participants were investigated with eyes closed and eyes open. DBS settings were randomized and double-blindly programmed. Patients with PD had greater coupling of the body compared to old and young controls during balance perturbations (p ≤ 0.046). Controls adopted a strategy with greater flexibility, particularly using the knee as a point of pivot, whereas patients with PD adopted an ankle strategy, i.e., they used the ankle as the point of pivot. There was higher flexibility in patients with PD with DBS ON and eyes open compared to DBS OFF and eyes closed (p ≤ 0.011). During balance perturbations, controls quickly adopted a new strategy that they retained throughout the test, but patients with PD were slower to adapt. Patients with PD further increased the coupling between segmental movement during balance perturbations with DBS ON but retained a high level of coupling with DBS OFF throughout balance perturbations. The ankle strategy during balance perturbations in patients with PD was most evident with DBS OFF and eyes closed. The increased coupling with balance perturbations implies a mechanism to reduce complexity at a cost of exerting more energy. Strategic alterations of posture were altered by DBS in patients with PD and were delayed. Our findings therefore show that DBS does not fully compensate for disease-related effects on posture.
Collapse
Affiliation(s)
- Mitesh Patel
- Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, WV1 1LY, UK
| | - Maria H Nilsson
- Department of Health Sciences, Lund University, 221 85, Lund, Sweden.,Memory Clinic, Skåne University Hospital, 212 24, Malmö, Sweden.,Clinical Memory Research Unit, Faculty of Medicine, Lund University, 221 85, Lund, Sweden
| | - Stig Rehncrona
- Department of Neurosurgery, Lund University, 221 85, Lund, Sweden
| | | | - Måns Magnusson
- Department of Clinical Sciences, Lund University, 221 85, Lund, Sweden
| | - Rolf Johansson
- Department of Automatic Control, Lund University, 221 00, Lund, Sweden
| | | |
Collapse
|
9
|
Spectral analysis of body movement during deep brain stimulation in Parkinson's disease. Gait Posture 2021; 86:217-225. [PMID: 33765547 DOI: 10.1016/j.gaitpost.2021.03.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 02/15/2021] [Accepted: 03/15/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND The characteristics of Parkinson's disease (PD) include postural instability and resting tremor. However, reductions of tremor amplitude do not always improve postural stability. RESEARCH QUESTION What is the effect of deep brain stimulation (DBS) of the subthalamic nucleus (STN) on spectral analysis of body movement in patients with PD when tested without anti-PD medication? The effect of visual cues was also studied. METHODS Ten patients with PD (mean age 64.3 years, range 59-69 years) and 17 control participants (mean age 71.2 years, range 65-79 years) were recruited. Spectral power following a period of quiet stance (35 s) was analysed in three different spectral power bands (0-4 Hz, 4-7 Hz and 7-25 Hz). Motion markers were secured to the head, shoulder, hip, and knee, which recorded movements in two directions, the anteroposterior and lateral. RESULTS DBS STN significantly changed the spectral distribution pattern across the body in the anteroposterior (p = 0.029) and lateral directions (p ≤ 0.003). DBS predominantly reduced spectral power at the head (p ≤ 0.037) and shoulder (p ≤ 0.031) in the lateral direction. The spectral power of the lower and upper body in patients with PD, with DBS ON, were more similar to the control group, than to DBS OFF. Visual cues mainly reduced spectral power in the anteroposterior direction at the shoulder (p ≤ 0.041) in controls and in patients with PD with DBS ON. SIGNIFICANCE There is an altered postural strategy in patients with PD with DBS ON as shown by an altered spectral power distribution pattern across body segments and a reduction of spectral power in the lateral direction at the head and shoulder. A reduction of spectral power in controls and in patients with PD with DBS ON suggests that visual cues are able to reduce spectral power to some extent, but not with DBS OFF where postural sway and power are larger.
Collapse
|