1
|
Verma SK, Kumar LK, Thumar M, Kumar TVC, Vedamurthy VG, Singh D, Onteru SK. A synonymous single nucleotide polymorphism (g.36417726C > A) in the Lama2 gene influencing fat deposition is associated with post-partum anestrus interval in Murrah buffalo. Gene 2024; 896:148032. [PMID: 38008271 DOI: 10.1016/j.gene.2023.148032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 11/08/2023] [Accepted: 11/22/2023] [Indexed: 11/28/2023]
Abstract
Postpartum absence of estrus exhibition known as postpartum anestrus interval (PPAI) for more than 90 days after calving is a concerning issue for dairy buffalo farmers' economy. The PPAI duration is influenced by both management practices and animal genetics. Investigating genetic markers associated with PPAI is crucial for incorporating them into marker-assisted selection programs. Towards this goal, our study focused on exploring potential genetic markers from early postpartum adipose tissue gene networks. We successfully identified 24 Single Nucleotide Polymorphisms (SNPs) within 9 candidate genes. In our initial analysis involving 100 buffaloes, we detected a significant association (P = 0.02267) between a specific synonymous SNP within the Lama2 gene (g.36417726C > A) and PPAI. This finding was subsequently validated (P = 0.02937) in a larger cohort of 415 buffaloes, where the SNP explained 1.36 % of the genetic variance. Intriguingly, buffaloes with the CC genotype of this SNP exhibited a PPAI that was 12.71 ± 3.21 days longer compared to buffaloes with AA and CA genotypes. To gain insight into the functional relevance of this SNP, a computational analysis was performed which indicated that the C allele of the SNP (g.36417726C > A) increased the stability of LAMA2 mRNA compared to the A allele. This computational prediction was corroborated by observing a significant increase (P = 0.01798) in Lama2 gene expression (greater than 8-fold) and higher fat percentage (P < 0.05) in adipose tissue of CC genotypes (48.78 ± 1.87 %) compared to AA genotypes (33.59 ± 4.5 %). Furthermore, we noted a significant (P < 0.05) upregulation of C/ebpβ, Pparγ, Fasn, C/ebpα, and Pnpla2 genes, along with the downregulation of Bmp2 and Ptch1 in CC genotypes as opposed to AA genotypes. This observation suggests the involvement of the Pparγ-mediated pathway in both adipogenesis and lipolysis within CC genotypes. In summary, our comprehensive analysis involving association and functional validation underscores the potential of the SNP (g.36417726C > A) within the Lama2 gene as a promising genetic marker against extended PPAI in Murrah buffalo.
Collapse
Affiliation(s)
- Surya Kant Verma
- Molecular Endocrinology, Functional Genomics & System Biology Laboratory, Animal Biochemistry Division, ICAR - National Dairy Research Institute (NDRI), Karnal, India
| | - Lal Krishan Kumar
- Molecular Endocrinology, Functional Genomics & System Biology Laboratory, Animal Biochemistry Division, ICAR - National Dairy Research Institute (NDRI), Karnal, India
| | - Meet Thumar
- Molecular Endocrinology, Functional Genomics & System Biology Laboratory, Animal Biochemistry Division, ICAR - National Dairy Research Institute (NDRI), Karnal, India
| | - Thota Venkata Chaitanya Kumar
- Molecular Endocrinology, Functional Genomics & System Biology Laboratory, Animal Biochemistry Division, ICAR - National Dairy Research Institute (NDRI), Karnal, India
| | - Veerappa Gowdar Vedamurthy
- Molecular Endocrinology, Functional Genomics & System Biology Laboratory, Animal Biochemistry Division, ICAR - National Dairy Research Institute (NDRI), Karnal, India
| | - Dheer Singh
- Molecular Endocrinology, Functional Genomics & System Biology Laboratory, Animal Biochemistry Division, ICAR - National Dairy Research Institute (NDRI), Karnal, India
| | - Suneel Kumar Onteru
- Molecular Endocrinology, Functional Genomics & System Biology Laboratory, Animal Biochemistry Division, ICAR - National Dairy Research Institute (NDRI), Karnal, India.
| |
Collapse
|
2
|
Verma SK, Chandel R, Mahanandia NC, Kumar TVC, Kumar LK, Veerappa VG, Singh D, Onteru SK. A single nucleotide polymorphism of the thyrotropin releasing hormone degrading ectoenzyme (TRHDE) gene is associated with post-partum anestrus in Murrah buffalo. Gene 2022; 834:146580. [PMID: 35598680 DOI: 10.1016/j.gene.2022.146580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 04/29/2022] [Accepted: 05/16/2022] [Indexed: 11/04/2022]
Abstract
Thyrotropin releasing hormone degrading enzyme (TRHDE) gene is implicated in Thyrotropin releasing hormone (TRH) mediated prolactin secretion. It has been shown that the prolactin secretion alters the Gonadotropin-releasinghormone(GnRH) mediated estrous cycle. Therefore, TRHDE may also regulate postpartum anestrus. Earlier studies reported the role of non-synonymous single nucleotide polymorphism (SNPs) in various pathophysiological conditions by altering the structure and function of the proteins. Hence, in the present study, we identified SNPs in the putative promoter, first exon, middle exon and 3'-UTR containing the last exon of TRHDE gene and determined their association with postpartum anestrus (PPA) in Murrah buffaloes. We found one non synonymous SNP (G > C at 118095875 bp on chromosome 4) in the first exon of TRHDE and performed its association analysis in a population sample of 50 extreme PPA (residual PPAI: 123.06 ± 12.98 days) and 50 normal (residual PPAI: -80.46 ± 3.19 days) buffaloes. The residual PPAI value was the observed PPAI adjusted for the effect of 38 non-genetic factors. The analysis showed a significant (P < 0.004167) association of this SNP with PPA in buffaloes. Molecular dynamics simulations (MDS) also supported that the C allele altering Glutamine to Histidine at the amino acid 148 of TRHDE could enhance the stability and rigidity of TRHDE protein, which may lower its activity, increase TRH and prolactin, and reduce GnRH in PPA buffaloes. The MDS analysis further strengthens the association of the SNP (G > C) in the TRHDE gene with PPA condition in Murrah buffaloes. However, further investigation is needed to prove the MDS observations.
Collapse
Affiliation(s)
- Surya Kant Verma
- Molecular Endocrinology, Functional Genomics & System Biology Laboratory, Animal Biochemistry Division, ICAR - National Dairy Research Institute, Karnal, India
| | - Rajeev Chandel
- Molecular Endocrinology, Functional Genomics & System Biology Laboratory, Animal Biochemistry Division, ICAR - National Dairy Research Institute, Karnal, India
| | - Nimai Charan Mahanandia
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Thota Venkata Chaitanya Kumar
- Molecular Endocrinology, Functional Genomics & System Biology Laboratory, Animal Biochemistry Division, ICAR - National Dairy Research Institute, Karnal, India
| | - Lal Krishan Kumar
- Molecular Endocrinology, Functional Genomics & System Biology Laboratory, Animal Biochemistry Division, ICAR - National Dairy Research Institute, Karnal, India
| | - Vedamurthy G Veerappa
- Molecular Endocrinology, Functional Genomics & System Biology Laboratory, Animal Biochemistry Division, ICAR - National Dairy Research Institute, Karnal, India
| | - Dheer Singh
- Molecular Endocrinology, Functional Genomics & System Biology Laboratory, Animal Biochemistry Division, ICAR - National Dairy Research Institute, Karnal, India
| | - Suneel Kumar Onteru
- Molecular Endocrinology, Functional Genomics & System Biology Laboratory, Animal Biochemistry Division, ICAR - National Dairy Research Institute, Karnal, India.
| |
Collapse
|