1
|
Kho ASK, Ooi EH, Foo JJ, Ooi ET. Saline-Infused Radiofrequency Ablation: A Review on the Key Factors for a Safe and Reliable Tumour Treatment. IEEE Rev Biomed Eng 2024; 17:310-321. [PMID: 35653443 DOI: 10.1109/rbme.2022.3179742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Radiofrequency ablation (RFA) combined with saline infusion into tissue is a promising technique to ablate larger tumours. Nevertheless, the application of saline-infused RFA remains at clinical trials due to the contradictory findings as a result of the inconsistencies in experimental procedures. These inconsistencies not only magnify the number of factors to consider during the treatment, but also obscure the understanding of the role of saline in enlarging the coagulation zone. Consequently, this can result in major complications, which includes unwanted thermal damages to adjacent tissues and also incomplete ablation of the tumour. This review aims to identify the key factors of saline responsible for enlarging the coagulation zone during saline-infused RFA, and provide a proper understanding on their effects that is supported with findings from computational studies to ensure a safe and reliable cancer treatment.
Collapse
|
2
|
Haber A, Shapira N, Zeidan A, Giladi M, Story MD. Implications of electrical properties of cells for treatment specificity of electric/electromagnetic fields-based therapeutic approaches. Phys Life Rev 2023; 47:154-156. [PMID: 39491436 DOI: 10.1016/j.plrev.2023.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 09/24/2023] [Indexed: 11/05/2024]
Affiliation(s)
| | | | | | | | - Michael D Story
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas; Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
3
|
Mankertz F, Bayerl N, Gemeinhardt O, Hosten N, Kromrey ML. The Effect of Cooling Fluid Composition on Ablation Size in Hepatic Laser Ablation: A Comparative Study in an Ex Vivo Bovine Setting. Tomography 2023; 9:1638-1648. [PMID: 37736984 PMCID: PMC10514785 DOI: 10.3390/tomography9050131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/25/2023] [Accepted: 08/27/2023] [Indexed: 09/23/2023] Open
Abstract
PURPOSE Hyperthermic ablation is a minimally invasive mode of tumour therapy which serves as a viable alternative to surgical intervention. However, one of the major drawbacks, besides the heat sink effect and the risk of damaging adjacent organs, is limited ablation size. The use of a cooling fluid during ablation has been shown to increase the ablation volume and decrease the carbonisation rate. The aim of this study was to investigate whether the composition of the cooling fluid has an effect on ablation size and carbonisation rate during hepatic laser ablation in an ex vivo bovine setting. METHOD In this study bovine hepatic tissue was ablated in an ex vivo setting using an internally cooled laser applicator. A total of 45 tissue samples were assigned to three groups: 0.9% saline infusion (n = 15), distilled water infusion (n = 15) and a 50%/50% mixture of 0.9% saline and distilled water (n = 15). Ablation was conducted using a 1064 nm Nd:YAG laser at a wattage of 25 W and time interval of 10 min. The ablation volume and carbonisation rate were then measured and recorded through postprocedural MRI. One-way ANOVA and post-hoc testing were performed to assess the effect of the cooling fluid composition on the ablation volumes. RESULTS We found that using a mixture of saline and distilled water as a cooling fluid during hyperthermic ablation resulted in a larger ablation volume (mean ± SD: 22.64 ± 0.99 cm3) when compared to saline infusion (21.08 ± 1.11 cm3) or distilled water infusion (20.92 ± 0.92 cm3). This difference was highly significant (p < 0.001). There was no significant difference in ablation size between the saline group and the distilled water group. The highest carbonisation rate occurred in the saline group (12/15), followed by the mixed infusion group (3/15) and the distilled water group (1/15). CONCLUSIONS The results of this study suggest that cooling fluid composition during hepatic laser ablation affects ablation volume in an ex vivo bovine setting. There was no statistically significant difference when comparing ablation volumes during saline infusion and distilled water infusion, but the carbonisation rate was significantly higher when using saline. The combination of saline and distilled water in a 50%/50% mixture as cooling fluid appears to be an auspicious alternative, as ablation volumes created with it are larger when compared to saline and distilled water alone, while carbonisation rate remains low. This might improve patient outcome as well as patient eligibility for hyperthermic ablation.
Collapse
Affiliation(s)
- Fiona Mankertz
- Institute for Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Nadine Bayerl
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Ole Gemeinhardt
- Department of Radiology, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Norbert Hosten
- Institute for Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Marie-Luise Kromrey
- Institute for Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, 17475 Greifswald, Germany
| |
Collapse
|
4
|
Beckwith M, Cushman D, Clark T, Park PK, Burnham T, Burnham R, McCormick ZL, Conger A. Radiofrequency Ablation of the Infrapatellar Branch of the Saphenous Nerve for the Treatment of Chronic Anterior Inferomedial Knee Pain. PAIN MEDICINE 2023; 24:150-157. [PMID: 35866617 DOI: 10.1093/pm/pnac108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 02/06/2023]
Abstract
INTRO Genicular nerve radiofrequency ablation (GNRFA) is an effective treatment for chronic knee pain related to osteoarthritis. It is often utilized when conservative management has failed and patients wish to avoid arthroplasty, are poor surgical candidates due to comorbid medical conditions, or in those suffering from persistent pain after arthroplasty. The classic targets for GNRFA include the superior lateral genicular nerve, superior medial genicular nerve, and inferior medial genicular nerve but multiple anatomic studies have demonstrated additional sensory innervation to the knee. OBJECTIVE In this research article, we propose an image-guided technique that can safely target the infrapatellar branch of the saphenous nerve which also provides sensory innervation to the anterior capsule. PROPOSAL The proposed technique includes variations for conventional bipolar radiofrequency ablation, cooled radiofrequency ablation, dual-tined bipolar radiofrequency ablation, and monopolar radiofrequency ablation using a long axis approach. The described technique is based on updated anatomic studies and takes into account safety concerns such as thermal risk to the skin and/or pes anserine tendons and breaching of the synovial cavity. CONCLUSION Future clinical research should be performed to confirm the safety and effectiveness of this specific approach.
Collapse
Affiliation(s)
- Margaret Beckwith
- Division of Physical Medicine and Rehabilitation, Department of Orthopedics, University of Washington St. Louis, St. Louis, Missouri, USA
| | - Daniel Cushman
- Department of Physical Medicine and Rehabilitation, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Tyler Clark
- Department of Physical Medicine and Rehabilitation, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Peter K Park
- Division of Physical Medicine and Rehabilitation, Department of Orthopedics, University of Washington St. Louis, St. Louis, Missouri, USA
| | - Taylor Burnham
- Department of Physical Medicine and Rehabilitation, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Robert Burnham
- Division of Physical Medicine and Rehabilitation, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.,Central Alberta Pain and Rehabilitation Institute, Lacombe, Alberta, Canada.,Vivo Cura Health, Calgary, Alberta, Canada
| | - Zachary L McCormick
- Department of Physical Medicine and Rehabilitation, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Aaron Conger
- Department of Physical Medicine and Rehabilitation, University of Utah School of Medicine, Salt Lake City, Utah, USA
| |
Collapse
|
5
|
Yip WP, Kho ASK, Ooi EH, Ooi ET. An in silico assessment on the potential of using saline infusion to overcome non-confluent coagulation zone during two-probe, no-touch bipolar radiofrequency ablation of liver cancer. Med Eng Phys 2023; 112:103950. [PMID: 36842773 DOI: 10.1016/j.medengphy.2023.103950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/26/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
No-touch bipolar radiofrequency ablation (bRFA) is known to produce incomplete tumour ablation with a 'butterfly-shaped' coagulation zone when the interelectrode distance exceeds a certain threshold. Although non-confluent coagulation zone can be avoided by not implementing the no-touch mode, doing so exposes the patient to the risk of tumour track seeding. The present study investigates if prior infusion of saline into the tissue can overcome the issues of non-confluent or butterfly-shaped coagulation. A computational modelling approach based on the finite element method was carried out. A two-compartment model comprising the tumour that is surrounded by healthy liver tissue was developed. Three cases were considered; i) saline infusion into the tumour centre; ii) one-sided saline infusion outside the tumour; and iii) two-sided saline infusion outside the tumour. For each case, three different saline volumes were considered, i.e. 6, 14 and 22 ml. Saline concentration was set to 15% w/v. Numerical results showed that saline infusion into the tumour centre can overcome the butterfly-shaped coagulation only if the infusion volume is sufficient. On the other hand, one-sided infusion outside the tumour did not overcome this. Two-sided infusion outside the tumour produced confluent coagulation zone with the largest volume. Results obtained from the present study suggest that saline infusion, when carried out correctly, can be used to effectively eradicate liver cancer. This presents a practical solution to address non-confluent coagulation zone typical of that during two-probe bRFA treatment.
Collapse
Affiliation(s)
- Wai P Yip
- Mechanical Engineering Discipline, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Antony S K Kho
- Mechanical Engineering Discipline, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Ean H Ooi
- Mechanical Engineering Discipline, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia; Advanced Engineering Platform, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia.
| | - Ean T Ooi
- School of Engineering and Information Technology, Faculty of Science and Technology, Federation University, VIC 3350, Australia
| |
Collapse
|
6
|
Molinari L, Zaltieri M, Massaroni C, Filippi S, Gizzi A, Schena E. Multiscale and Multiphysics Modeling of Anisotropic Cardiac RFCA: Experimental-Based Model Calibration via Multi-Point Temperature Measurements. Front Physiol 2022; 13:845896. [PMID: 35514332 PMCID: PMC9062295 DOI: 10.3389/fphys.2022.845896] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
Radiofrequency catheter ablation (RFCA) is the mainstream treatment for drug-refractory cardiac fibrillation. Multiple studies demonstrated that incorrect dosage of radiofrequency energy to the myocardium could lead to uncontrolled tissue damage or treatment failure, with the consequent need for unplanned reoperations. Monitoring tissue temperature during thermal therapy and predicting the extent of lesions may improve treatment efficacy. Cardiac computational modeling represents a viable tool for identifying optimal RFCA settings, though predictability issues still limit a widespread usage of such a technology in clinical scenarios. We aim to fill this gap by assessing the influence of the intrinsic myocardial microstructure on the thermo-electric behavior at the tissue level. By performing multi-point temperature measurements on ex-vivo swine cardiac tissue samples, the experimental characterization of myocardial thermal anisotropy allowed us to assemble a fine-tuned thermo-electric material model of the cardiac tissue. We implemented a multiphysics and multiscale computational framework, encompassing thermo-electric anisotropic conduction, phase-lagging for heat transfer, and a three-state dynamical system for cellular death and lesion estimation. Our analysis resulted in a remarkable agreement between ex-vivo measurements and numerical results. Accordingly, we identified myocardium anisotropy as the driving effect on the outcomes of hyperthermic treatments. Furthermore, we characterized the complex nonlinear couplings regulating tissue behavior during RFCA, discussing model calibration, limitations, and perspectives.
Collapse
Affiliation(s)
- Leonardo Molinari
- Department of Mathematics and Computer Science, Emory University, Atlanta, GA, United States
| | - Martina Zaltieri
- Laboratory of Measurement and Biomedical Instrumentation, Department of Engineering, University of Rome Campus Bio-Medico, Rome, Italy
| | - Carlo Massaroni
- Laboratory of Measurement and Biomedical Instrumentation, Department of Engineering, University of Rome Campus Bio-Medico, Rome, Italy
| | - Simonetta Filippi
- Nonlinear Physics and Mathematical Modeling Lab, Department of Engineering, University of Rome Campus Bio-Medico, Rome, Italy
| | - Alessio Gizzi
- Nonlinear Physics and Mathematical Modeling Lab, Department of Engineering, University of Rome Campus Bio-Medico, Rome, Italy
| | - Emiliano Schena
- Laboratory of Measurement and Biomedical Instrumentation, Department of Engineering, University of Rome Campus Bio-Medico, Rome, Italy
| |
Collapse
|