1
|
Pilmeyer J, Lamerichs R, Schielen S, Ramsaransing F, van Kranen-Mastenbroek V, Jansen JFA, Breeuwer M, Zinger S. Multi-modal MRI for objective diagnosis and outcome prediction in depression. Neuroimage Clin 2024; 44:103682. [PMID: 39395373 DOI: 10.1016/j.nicl.2024.103682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/18/2024] [Accepted: 10/01/2024] [Indexed: 10/14/2024]
Abstract
RESEARCH PURPOSE The low treatment effectiveness in major depressive disorder (MDD) may be caused by the subjectiveness in clinical examination and the lack of quantitative tests. Objective biomarkers derived from magnetic resonance imaging (MRI) may support clinical experts during decision-making. Numerous studies have attempted to identify such MRI-based biomarkers. However, the majority is uni-modal (based on a single MRI modality) and focus on either MDD diagnosis or outcome. Uncertainty remains regarding whether key features or classification models for diagnosis may also be used for outcome prediction. Therefore, we aim to find multi-modal predictors of both, MDD diagnosis and outcome. By addressing these research questions using the same dataset, we eliminate between-study confounding factors. Various structural (T1-weighted, T2-weighted, diffusion tensor imaging (DTI)) and functional (resting-state and task-based functional MRI) scans were acquired from 32 MDD and 31 healthy control (HC) subjects during the first visit at the investigational site (baseline). Depression severity was assessed at baseline and 6 months later. Features were extracted from the baseline MRI images with different modalities. Binary 6-months negative and positive outcome (NO; PO) classes were defined based on relative (to baseline) change in depression severity. Support vector machine models were employed to separate MDD from HC (diagnosis) and NO from PO subjects (outcome). Classification was performed through a uni-modal (features from a single MRI modality) and multi-modal (combination of features from different modalities) approach. PRINCIPAL RESULTS Our results show that DTI features yielded the highest uni-modal performance for diagnosis and outcome prediction: mean diffusivity (AUC (area under the curve) = 0.701) and the sum of streamline weights (AUC = 0.860), respectively. Multi-modal ensemble classifiers with T1-weighted, resting-state functional MRI and DTI features improved classification performance for both diagnosis and outcome (AUC = 0.746 and 0.932, respectively). Feature analyses revealed that the most important features were located in frontal, limbic and parietal areas. However, the modality or location of these features was different between diagnostic and prognostic models. MAJOR CONCLUSIONS Our findings suggest that combining features from different MRI modalities predict MDD diagnosis and outcome with higher performance. Furthermore, we demonstrated that the most important features for MDD diagnosis were different and located in other brain regions than those for outcome. This longitudinal study contributes to the identification of objective biomarkers of MDD and its outcome. Follow-up studies may further evaluate the generalizability of our models in larger or multi-center cohorts.
Collapse
Affiliation(s)
- Jesper Pilmeyer
- Department of Electrical Engineering, Eindhoven University of Technology, Groene Loper 19, 5612 AE Eindhoven, the Netherlands; Department of Research and Development, Epilepsy Centre Kempenhaeghe, Sterkselseweg 65, 5590 AB Heeze, the Netherlands.
| | - Rolf Lamerichs
- Department of Electrical Engineering, Eindhoven University of Technology, Groene Loper 19, 5612 AE Eindhoven, the Netherlands; Department of Research and Development, Epilepsy Centre Kempenhaeghe, Sterkselseweg 65, 5590 AB Heeze, the Netherlands; Department of Medical Image Acquisitions, Philips Research, High Tech Campus 34, 5656 AE Eindhoven, the Netherlands
| | - Sjir Schielen
- Department of Electrical Engineering, Eindhoven University of Technology, Groene Loper 19, 5612 AE Eindhoven, the Netherlands
| | - Faroeq Ramsaransing
- Department of Electrical Engineering, Eindhoven University of Technology, Groene Loper 19, 5612 AE Eindhoven, the Netherlands; Department of Research and Development, Epilepsy Centre Kempenhaeghe, Sterkselseweg 65, 5590 AB Heeze, the Netherlands; Department of Psychiatry, Amsterdam University Medical Center, Meibergdreef 5, 1105 AZ Amsterdam, the Netherlands
| | - Vivianne van Kranen-Mastenbroek
- Mental Health and Neuroscience Research Institute, Maastricht University, Minderbroedersberg 4-6, 6211 LK Maastricht, the Netherlands; Academic Center for Epileptology, Kempenhaeghe and Maastricht University Medical Centre, Heeze and Maastricht, the Netherlands; Department of Clinical Neurophysiology, Maastricht University Medical Centre, P. Debyelaan 25, 6229 HX Maastricht, the Netherlands
| | - Jacobus F A Jansen
- Department of Electrical Engineering, Eindhoven University of Technology, Groene Loper 19, 5612 AE Eindhoven, the Netherlands; Mental Health and Neuroscience Research Institute, Maastricht University, Minderbroedersberg 4-6, 6211 LK Maastricht, the Netherlands; Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre, P. Debyelaan 25, 6229 HX Maastricht, the Netherlands
| | - Marcel Breeuwer
- Department of Electrical Engineering, Eindhoven University of Technology, Groene Loper 19, 5612 AE Eindhoven, the Netherlands; Department of Biomedical Engineering, Eindhoven University of Technology, Groene Loper 5, 5612 AE Eindhoven, the Netherlands
| | - Svitlana Zinger
- Department of Electrical Engineering, Eindhoven University of Technology, Groene Loper 19, 5612 AE Eindhoven, the Netherlands; Department of Research and Development, Epilepsy Centre Kempenhaeghe, Sterkselseweg 65, 5590 AB Heeze, the Netherlands
| |
Collapse
|
2
|
Zeng X, Gong J, Li W, Yang Z. Knowledge-driven multi-graph convolutional network for brain network analysis and potential biomarker discovery. Med Image Anal 2024; 99:103368. [PMID: 39418829 DOI: 10.1016/j.media.2024.103368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/04/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024]
Abstract
In brain network analysis, individual-level data can provide biological features of individuals, while population-level data can provide demographic information of populations. However, existing methods mostly utilize either individual- or population-level features separately, inevitably neglecting the multi-level characteristics of brain disorders. To address this issue, we propose an end-to-end multi-graph neural network model called KMGCN. This model simultaneously leverages individual- and population-level features for brain network analysis. At the individual level, we construct multi-graph using both knowledge-driven and data-driven approaches. Knowledge-driven refers to constructing a knowledge graph based on prior knowledge, while data-driven involves learning a data graph from the data itself. At the population level, we construct multi-graph using both imaging and phenotypic data. Additionally, we devise a pooling method tailored for brain networks, capable of selecting brain regions that impact brain disorders. We evaluate the performance of our model on two large datasets, ADNI and ABIDE, and experimental results demonstrate that it achieves state-of-the-art performance, with 86.87% classification accuracy for ADNI and 86.40% for ABIDE, accompanied by around 10% improvements in all evaluation metrics compared to the state-of-the-art models. Additionally, the biomarkers identified by our model align well with recent neuroscience research, indicating the effectiveness of our model in brain network analysis and potential biomarker discovery. The code is available at https://github.com/GN-gjh/KMGCN.
Collapse
Affiliation(s)
- Xianhua Zeng
- Chongqing Key Laboratory of Image Cognition, School of Computer Science and Technology/School of Artificial Intelligence, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China; Key Laboratory of Cyberspace Big Data Intelligent Security (Ministry of Education), Chongqing University of Posts and Telecommunications, Chongqing, 400065, China.
| | - Jianhua Gong
- Chongqing Key Laboratory of Image Cognition, School of Computer Science and Technology/School of Artificial Intelligence, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China; Key Laboratory of Cyberspace Big Data Intelligent Security (Ministry of Education), Chongqing University of Posts and Telecommunications, Chongqing, 400065, China
| | - Weisheng Li
- Chongqing Key Laboratory of Image Cognition, School of Computer Science and Technology/School of Artificial Intelligence, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China; Key Laboratory of Cyberspace Big Data Intelligent Security (Ministry of Education), Chongqing University of Posts and Telecommunications, Chongqing, 400065, China
| | - Zhuoya Yang
- Chongqing Key Laboratory of Image Cognition, School of Computer Science and Technology/School of Artificial Intelligence, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China; Key Laboratory of Cyberspace Big Data Intelligent Security (Ministry of Education), Chongqing University of Posts and Telecommunications, Chongqing, 400065, China
| |
Collapse
|
3
|
Wu T, Yin X, Xu L, Yu J. Using dynamic spatio-temporal graph pooling network for identifying autism spectrum disorders in spontaneous functional infrared spectral sequence signals. J Neurosci Methods 2024; 409:110157. [PMID: 38705284 DOI: 10.1016/j.jneumeth.2024.110157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/21/2024] [Accepted: 04/27/2024] [Indexed: 05/07/2024]
Abstract
BACKGROUND Autism classification work on fNIRS data using dynamic graph networks. Explore the impact of the dynamic connection relationship between brain channels on ASD, and compare the brain channel connection diagrams of ASD and TD to explore potential factors that influence the development of autism. METHOD Using dynamic graph construction to mine the dynamic relationships of fNIRS data, obtain spatio-temporal correlations through dynamic feature extraction, and improve the information extraction capabilities of the network through spatio-temporal graph pooling to achieve classification of ASD. RESULT A classification effect with an accuracy of 97.2% was achieved using a short sequence of 1.75s. The results showed that the dynamic connections of channel 5 and 19, channel 12 and 25, and channel 7 and 34 have a greater impact on the classification of autism. Comparison with previously used method(s): Compared with previous deep learning models, our model achieves efficient classification using short-term fNIRS data of 1.75s, and analyzes the impact of dynamic connections on classification through dynamic graphs. CONCLUSION Using Dynamic Spatio-Temporal Graph Pooled Neural Networks (DSTGPN), dynamic connectivity between brain channels was found to have an impact on the classification of autism. By modeling the brain channel relationship maps of ASD and TD, hyperlink clusters were found to exist on the brain channel connections of ASD.
Collapse
Affiliation(s)
- Taoxing Wu
- School of Computer Engineering and Science, Shanghai University, Shanghai, China
| | - Xiao Yin
- School of Computer Engineering and Science, Shanghai University, Shanghai, China
| | - Lingyu Xu
- School of Computer Engineering and Science, Shanghai University, Shanghai, China; Shanghai Institute for Advanced Communication and Data Science, Shanghai University, Shanghai, China.
| | - Jie Yu
- School of Computer Engineering and Science, Shanghai University, Shanghai, China.
| |
Collapse
|
4
|
Gamgam G, Yıldırım Z, Kabakçıoğlu A, Gurvit H, Demiralp T, Acar B. Siamese Graph Convolutional Network quantifies increasing structure-function discrepancy over the cognitive decline continuum. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 254:108290. [PMID: 38954916 DOI: 10.1016/j.cmpb.2024.108290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 05/09/2024] [Accepted: 06/16/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND AND OBJECTIVE Alzheimer's disease dementia (ADD) is well known to induce alterations in both structural and functional brain connectivity. However, reported changes in connectivity are mostly limited to global/local network features, which have poor specificity for diagnostic purposes. Following recent advances in machine learning, deep neural networks, particularly Graph Neural Network (GNN) based approaches, have found applications in brain research as well. The majority of existing applications of GNNs employ a single network (uni-modal or structure/function unified), despite the widely accepted view that there is a nontrivial interdependence between the brain's structural connectivity and the neural activity patterns, which is hypothesized to be disrupted in ADD. This disruption is quantified as a discrepancy score by the proposed "structure-function discrepancy learning network" (sfDLN) and its distribution is studied over the spectrum of clinical cognitive decline. The measured discrepancy score is utilized as a diagnostic biomarker and is compared with state-of-the-art diagnostic classifiers. METHODS sfDLN is a GNN with a siamese architecture built on the hypothesis that the mismatch between structural and functional connectivity patterns increases over the cognitive decline spectrum, starting from subjective cognitive impairment (SCI), passing through a mid-stage mild cognitive impairment (MCI), and ending up with ADD. The structural brain connectome (sNET) built using diffusion MRI-based tractography and the novel, sparse (lean) functional brain connectome (ℓNET) built using fMRI are input to sfDLN. The siamese sfDLN is trained to extract connectome representations and a discrepancy (dissimilarity) score that complies with the proposed hypothesis and is blindly tested on an MCI group. RESULTS The sfDLN generated structure-function discrepancy scores show high disparity between ADD and SCI subjects. Leave-one-out experiments of SCI-ADD classification over a cohort of 42 subjects reach 88% accuracy, surpassing state-of-the-art GNN-based classifiers in the literature. Furthermore, a blind assessment over a cohort of 46 MCI subjects confirmed that it captures the intermediary character of the MCI group. GNNExplainer module employed to investigate the anatomical determinants of the observed discrepancy confirms that sfDLN attends to cortical regions neurologically relevant to ADD. CONCLUSION In support of our hypothesis, the harmony between the structural and functional organization of the brain degrades with increasing cognitive decline. This discrepancy, shown to be rooted in brain regions neurologically relevant to ADD, can be quantified by sfDLN and outperforms state-of-the-art GNN-based ADD classification methods when used as a biomarker.
Collapse
Affiliation(s)
- Gurur Gamgam
- VAVlab, Department of Electrical And Electronics Eng., Bogazici University, Istanbul, 34342, Turkiye
| | - Zerrin Yıldırım
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, 34093, Turkiye
| | | | - Hakan Gurvit
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, 34093, Turkiye
| | - Tamer Demiralp
- Hulusi Behçet Life Sciences Research Lab., Istanbul University, Istanbul, 34093, Turkiye
| | - Burak Acar
- VAVlab, Department of Electrical And Electronics Eng., Bogazici University, Istanbul, 34342, Turkiye.
| |
Collapse
|
5
|
Schielen SJC, Pilmeyer J, Aldenkamp AP, Zinger S. The diagnosis of ASD with MRI: a systematic review and meta-analysis. Transl Psychiatry 2024; 14:318. [PMID: 39095368 PMCID: PMC11297045 DOI: 10.1038/s41398-024-03024-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 06/25/2024] [Accepted: 07/15/2024] [Indexed: 08/04/2024] Open
Abstract
While diagnosing autism spectrum disorder (ASD) based on an objective test is desired, the current diagnostic practice involves observation-based criteria. This study is a systematic review and meta-analysis of studies that aim to diagnose ASD using magnetic resonance imaging (MRI). The main objective is to describe the state of the art of diagnosing ASD using MRI in terms of performance metrics and interpretation. Furthermore, subgroups, including different MRI modalities and statistical heterogeneity, are analyzed. Studies that dichotomously diagnose individuals with ASD and healthy controls by analyses progressing from magnetic resonance imaging obtained in a resting state were systematically selected by two independent reviewers. Studies were sought on Web of Science and PubMed, which were last accessed on February 24, 2023. The included studies were assessed on quality and risk of bias using the revised Quality Assessment of Diagnostic Accuracy Studies tool. A bivariate random-effects model was used for syntheses. One hundred and thirty-four studies were included comprising 159 eligible experiments. Despite the overlap in the studied samples, an estimated 4982 unique participants consisting of 2439 individuals with ASD and 2543 healthy controls were included. The pooled summary estimates of diagnostic performance are 76.0% sensitivity (95% CI 74.1-77.8), 75.7% specificity (95% CI 74.0-77.4), and an area under curve of 0.823, but uncertainty in the study assessments limits confidence. The main limitations are heterogeneity and uncertainty about the generalization of diagnostic performance. Therefore, comparisons between subgroups were considered inappropriate. Despite the current limitations, methods progressing from MRI approach the diagnostic performance needed for clinical practice. The state of the art has obstacles but shows potential for future clinical application.
Collapse
Affiliation(s)
- Sjir J C Schielen
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands.
| | - Jesper Pilmeyer
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Albert P Aldenkamp
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
- Department of Behavioral Sciences, Epilepsy Center Kempenhaeghe, Heeze, the Netherlands
| | - Svitlana Zinger
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| |
Collapse
|
6
|
Li S, Zhang R. A novel interactive deep cascade spectral graph convolutional network with multi-relational graphs for disease prediction. Neural Netw 2024; 175:106285. [PMID: 38593556 DOI: 10.1016/j.neunet.2024.106285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/16/2023] [Accepted: 03/29/2024] [Indexed: 04/11/2024]
Abstract
Graph neural networks (GNNs) have recently grown in popularity for disease prediction. Existing GNN-based methods primarily build the graph topological structure around a single modality and combine it with other modalities to acquire feature representations of acquisitions. The complicated relationship in each modality, however, may not be well highlighted due to its specificity. Further, relatively shallow networks restrict adequate extraction of high-level features, affecting disease prediction performance. Accordingly, this paper develops a new interactive deep cascade spectral graph convolutional network with multi-relational graphs (IDCGN) for disease prediction tasks. Its crucial points lie in constructing multiple relational graphs and dual cascade spectral graph convolution branches with interaction (DCSGBI). Specifically, the former designs a pairwise imaging-based edge generator and a pairwise non-imaging-based edge generator from different modalities by devising two learnable networks, which adaptively capture graph structures and provide various views of the same acquisition to aid in disease diagnosis. Again, DCSGBI is established to enrich high-level semantic information and low-level details of disease data. It devises a cascade spectral graph convolution operator for each branch and incorporates the interaction strategy between different branches into the network, successfully forming a deep model and capturing complementary information from diverse branches. In this manner, more favorable and sufficient features are learned for a reliable diagnosis. Experiments on several disease datasets reveal that IDCGN exceeds state-of-the-art models and achieves promising results.
Collapse
Affiliation(s)
- Sihui Li
- Medical Big data Research Center, School of Mathematics, Northwest University, Xi'an 710127, Shaanxi, China.
| | - Rui Zhang
- Medical Big data Research Center, School of Mathematics, Northwest University, Xi'an 710127, Shaanxi, China.
| |
Collapse
|
7
|
Li N, Xiao J, Mao N, Cheng D, Chen X, Zhao F, Shi Z. Joint learning of multi-level dynamic brain networks for autism spectrum disorder diagnosis. Comput Biol Med 2024; 171:108054. [PMID: 38350396 DOI: 10.1016/j.compbiomed.2024.108054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/08/2024] [Accepted: 01/26/2024] [Indexed: 02/15/2024]
Abstract
Graph convolutional networks (GCNs), with their powerful ability to model non-Euclidean graph data, have shown advantages in learning representations of brain networks. However, considering the complexity, multilayeredness, and spatio-temporal dynamics of brain activities, we have identified two limitations in current GCN-based research on brain networks: 1) Most studies have focused on unidirectional information transmission across brain network levels, neglecting joint learning or bidirectional information exchange among networks. 2) Most of the existing models determine node neighborhoods by thresholding or simply binarizing the brain network, which leads to the loss of edge weight information and weakens the model's sensitivity to important information in the brain network. To address the above issues, we propose a multi-level dynamic brain network joint learning architecture based on GCN for autism spectrum disorder (ASD) diagnosis. Specifically, firstly, constructing different-level dynamic brain networks. Then, utilizing joint learning based on GCN for interactive information exchange among these multi-level brain networks. Finally, designing an edge self-attention mechanism to assign different edge weights to inter-node connections, which allows us to pick out the crucial features for ASD diagnosis. Our proposed method achieves an accuracy of 81.5 %. The results demonstrate that our method enables bidirectional transfer of high-order and low-order information, facilitating information complementarity between different levels of brain networks. Additionally, the use of edge weights enhances the representation capability of ASD-related features.
Collapse
Affiliation(s)
- Na Li
- School of Computer Science and Technology, Shandong Technology and Business University, Yantai, China; Department of Computer Science and Engineering, Xi'an University of Technology, Xi'an, Shanxi, China
| | - Jinjie Xiao
- School of Computer Science and Technology, Shandong Technology and Business University, Yantai, China
| | - Ning Mao
- Department of Radiology, Yantai Yuhuangding Hospital, Yantai, China
| | - Dapeng Cheng
- School of Computer Science and Technology, Shandong Technology and Business University, Yantai, China
| | - Xiaobo Chen
- School of Computer Science and Technology, Shandong Technology and Business University, Yantai, China
| | - Feng Zhao
- School of Computer Science and Technology, Shandong Technology and Business University, Yantai, China.
| | - Zhenghao Shi
- Department of Computer Science and Engineering, Xi'an University of Technology, Xi'an, Shanxi, China.
| |
Collapse
|
8
|
Wang X, Xin J, Wang Z, Qu L, Li J, Wang Z. Graph kernel of brain networks considering functional similarity measures. Comput Biol Med 2024; 171:108148. [PMID: 38367448 DOI: 10.1016/j.compbiomed.2024.108148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 02/07/2024] [Accepted: 02/12/2024] [Indexed: 02/19/2024]
Abstract
As a tool of brain network analysis, the graph kernel is often used to assist the diagnosis of neurodegenerative diseases. It is used to judge whether the subject is sick by measuring the similarity between brain networks. Most of the existing graph kernels calculate the similarity of brain networks based on structural similarity, which can better capture the topology of brain networks, but all ignore the functional information including the lobe, centers, left and right brain to which the brain region belongs and functions of brain regions in brain networks. The functional similarities can help more accurately locate the specific brain regions affected by diseases so that we can focus on measuring the similarity of brain networks. Therefore, a multi-attribute graph kernel for the brain network is proposed, which assigns multiple attributes to nodes in the brain network, and computes the graph kernel of the brain network according to Weisfeiler-Lehman color refinement algorithm. In addition, in order to capture the interaction between multiple brain regions, a multi-attribute hypergraph kernel is proposed, which takes into account the functional and structural similarities as well as the higher-order correlation between the nodes of the brain network. Finally, the experiments are conducted on real data sets and the experimental results show that the proposed methods can significantly improve the performance of neurodegenerative disease diagnosis. Besides, the statistical test shows that the proposed methods are significantly different from compared methods.
Collapse
Affiliation(s)
- Xinlei Wang
- School of Computer Science and Engineering, Northeastern University, 110169, China
| | - Junchang Xin
- School of Computer Science and Engineering, Northeastern University, 110169, China; Key Laboratory of Big Data Management and Analytics, Northeastern University, 110169, China.
| | - Zhongyang Wang
- School of Computer Science and Engineering, Shenyang Jianzhu University, 110169, China
| | - Luxuan Qu
- School of Computer Science and Engineering, Northeastern University, 110169, China
| | - Jiani Li
- School of Computer Science and Engineering, Northeastern University, 110169, China
| | - Zhiqiong Wang
- College of Medicine and Biological Information Engineering, Northeastern University, 110169, China
| |
Collapse
|
9
|
Lu Y, Liu T, Sheng Q, Zhang Y, Shi H, Jiao Z. Predicting the cognitive function status in end-stage renal disease patients at a functional subnetwork scale. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2024; 21:3838-3859. [PMID: 38549310 DOI: 10.3934/mbe.2024171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Brain functional networks derived from functional magnetic resonance imaging (fMRI) provide a promising approach to understanding cognitive processes and predicting cognitive abilities. The topological attribute parameters of global networks are taken as the features from the overall perspective. It is constrained to comprehend the subtleties and variances of brain functional networks, which fell short of thoroughly examining the complex relationships and information transfer mechanisms among various regions. To address this issue, we proposed a framework to predict the cognitive function status in the patients with end-stage renal disease (ESRD) at a functional subnetwork scale (CFSFSS). The nodes from different network indicators were combined to form the functional subnetworks. The area under the curve (AUC) of the topological attribute parameters of functional subnetworks were extracted as features, which were selected by the minimal Redundancy Maximum Relevance (mRMR). The parameter combination with improved fitness was searched by the enhanced whale optimization algorithm (E-WOA), so as to optimize the parameters of support vector regression (SVR) and solve the global optimization problem of the predictive model. Experimental results indicated that CFSFSS achieved superior predictive performance compared to other methods, by which the mean absolute error (MAE), mean absolute percentage error (MAPE), and root mean square error (RMSE) were up to 0.5951, 0.0281 and 0.9994, respectively. The functional subnetwork effectively identified the active brain regions associated with the cognitive function status, which offered more precise features. It not only helps to more accurately predict the cognitive function status, but also provides more references for clinical decision-making and intervention of cognitive impairment in ESRD patients.
Collapse
Affiliation(s)
- Yu Lu
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou 213164, China
| | - Tongqiang Liu
- Department of Nephrology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213003, China
| | - Quan Sheng
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou 213164, China
| | - Yutao Zhang
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou 213164, China
| | - Haifeng Shi
- Department of Radiology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213003, China
| | - Zhuqing Jiao
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou 213164, China
- School of Computer Science and Artificial Intelligence, Changzhou University, Changzhou 213164, China
| |
Collapse
|
10
|
Pandya S, Jain S, Verma J. A comprehensive analysis towards exploring the promises of AI-related approaches in autism research. Comput Biol Med 2024; 168:107801. [PMID: 38064848 DOI: 10.1016/j.compbiomed.2023.107801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/09/2023] [Accepted: 11/29/2023] [Indexed: 01/10/2024]
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental condition that presents challenges in communication, social interaction, repetitive behaviour, and limited interests. Detecting ASD at an early stage is crucial for timely interventions and an improved quality of life. In recent times, Artificial Intelligence (AI) has been increasingly used in ASD research. The rise in ASD diagnoses is due to the growing number of ASD cases and the recognition of the importance of early detection, which leads to better symptom management. This study explores the potential of AI in identifying early indicators of autism, aligning with the United Nations Sustainable Development Goals (SDGs) of Good Health and Well-being (Goal 3) and Peace, Justice, and Strong Institutions (Goal 16). The paper aims to provide a comprehensive overview of the current state-of-the-art AI-based autism classification by reviewing recent publications from the last decade. It covers various modalities such as Eye gaze, Facial Expression, Motor skill, MRI/fMRI, and EEG, and multi-modal approaches primarily grouped into behavioural and biological markers. The paper presents a timeline spanning from the history of ASD to recent developments in the field of AI. Additionally, the paper provides a category-wise detailed analysis of the AI-based application in ASD with a diagrammatic summarization to convey a holistic summary of different modalities. It also reports on the successes and challenges of applying AI for ASD detection while providing publicly available datasets. The paper paves the way for future scope and directions, providing a complete and systematic overview for researchers in the field of ASD.
Collapse
Affiliation(s)
- Shivani Pandya
- Department of Computer Science and Engineering, Nirma University, Ahmedabad, Gujarat 382481, India.
| | - Swati Jain
- Department of Computer Science and Engineering, Nirma University, Ahmedabad, Gujarat 382481, India.
| | - Jaiprakash Verma
- Department of Computer Science and Engineering, Nirma University, Ahmedabad, Gujarat 382481, India.
| |
Collapse
|
11
|
Wang M, Ma Z, Wang Y, Liu J, Guo J. A multi-view convolutional neural network method combining attention mechanism for diagnosing autism spectrum disorder. PLoS One 2023; 18:e0295621. [PMID: 38064474 PMCID: PMC10707567 DOI: 10.1371/journal.pone.0295621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental condition whose current psychiatric diagnostic process is subjective and behavior-based. In contrast, functional magnetic resonance imaging (fMRI) can objectively measure brain activity and is useful for identifying brain disorders. However, the ASD diagnostic models employed to date have not reached satisfactory levels of accuracy. This study proposes the use of MAACNN, a method that utilizes multi-view convolutional neural networks (CNNs) in conjunction with attention mechanisms for identifying ASD in multi-scale fMRI. The proposed algorithm effectively combines unsupervised and supervised learning. In the initial stage, we employ stacked denoising autoencoders, an unsupervised learning method for feature extraction, which provides different nodes to adapt to multi-scale data. In the subsequent stage, we perform supervised learning by employing multi-view CNNs for classification and obtain the final results. Finally, multi-scale data fusion is achieved by using the attention fusion mechanism. The ABIDE dataset is used to evaluate the model we proposed., and the experimental results show that MAACNN achieves superior performance with 75.12% accuracy and 0.79 AUC on ABIDE-I, and 72.88% accuracy and 0.76 AUC on ABIDE-II. The proposed method significantly contributes to the clinical diagnosis of ASD.
Collapse
Affiliation(s)
- Mingzhi Wang
- College of Computer and Control Engineering, Northeast Forestry University, Harbin, China
| | - Zhiqiang Ma
- College of Computer and Control Engineering, Northeast Forestry University, Harbin, China
| | - Yongjie Wang
- College of Computer and Control Engineering, Northeast Forestry University, Harbin, China
| | - Jing Liu
- College of Computer Science and Engineering, Guilin University of Aerospace Technology, Guilin, China
| | - Jifeng Guo
- College of Computer Science and Engineering, Guilin University of Aerospace Technology, Guilin, China
| |
Collapse
|
12
|
Yang J, Hu M, Hu Y, Zhang Z, Zhong J. Diagnosis of Autism Spectrum Disorder (ASD) Using Recursive Feature Elimination-Graph Neural Network (RFE-GNN) and Phenotypic Feature Extractor (PFE). SENSORS (BASEL, SWITZERLAND) 2023; 23:9647. [PMID: 38139493 PMCID: PMC10747878 DOI: 10.3390/s23249647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 12/24/2023]
Abstract
Autism spectrum disorder (ASD) poses as a multifaceted neurodevelopmental condition, significantly impacting children's social, behavioral, and communicative capacities. Despite extensive research, the precise etiological origins of ASD remain elusive, with observable connections to brain activity. In this study, we propose a novel framework for ASD detection, extracting the characteristics of functional magnetic resonance imaging (fMRI) data and phenotypic data, respectively. Specifically, we employ recursive feature elimination (RFE) for feature selection of fMRI data and subsequently apply graph neural networks (GNN) to extract informative features from the chosen data. Moreover, we devise a phenotypic feature extractor (PFE) to extract phenotypic features effectively. We then, synergistically fuse the features and validate them on the ABIDE dataset, achieving 78.7% and 80.6% accuracy, respectively, thereby showcasing competitive performance compared to state-of-the-art methods. The proposed framework provides a promising direction for the development of effective diagnostic tools for ASD.
Collapse
Affiliation(s)
| | | | | | | | - Jiancheng Zhong
- College of Information Science and Engineering, Hunan Normal University, Changsha 410081, China; (J.Y.); (M.H.); (Y.H.); (Z.Z.)
| |
Collapse
|
13
|
Alharthi AG, Alzahrani SM. Do it the transformer way: A comprehensive review of brain and vision transformers for autism spectrum disorder diagnosis and classification. Comput Biol Med 2023; 167:107667. [PMID: 37939407 DOI: 10.1016/j.compbiomed.2023.107667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 10/25/2023] [Accepted: 10/31/2023] [Indexed: 11/10/2023]
Abstract
Autism spectrum disorder (ASD) is a condition observed in children who display abnormal patterns of interaction, behavior, and communication with others. Despite extensive research efforts, the underlying causes of this neurodevelopmental disorder and its biomarkers remain unknown. However, advancements in artificial intelligence and machine learning have improved clinicians' ability to diagnose ASD. This review paper investigates various MRI modalities to identify distinct features that characterize individuals with ASD compared to typical control subjects. The review then moves on to explore deep learning models for ASD diagnosis, including convolutional neural networks (CNNs), autoencoders, graph convolutions, attention networks, and other models. CNNs and their variations are particularly effective due to their capacity to learn structured image representations and identify reliable biomarkers for brain disorders. Computer vision transformers often employ CNN architectures with transfer learning techniques like fine-tuning and layer freezing to enhance image classification performance, surpassing traditional machine learning models. This review paper contributes in three main ways. Firstly, it provides a comprehensive overview of a recommended architecture for using vision transformers in the systematic ASD diagnostic process. To this end, the paper investigates various pre-trained vision architectures such as VGG, ResNet, Inception, InceptionResNet, DenseNet, and Swin models that were fine-tuned for ASD diagnosis and classification. Secondly, it discusses the vision transformers of 2020th like BiT, ViT, MobileViT, and ConvNeXt, and applying transfer learning methods in relation to their prospective practicality in ASD classification. Thirdly, it explores brain transformers that are pre-trained on medically rich data and MRI neuroimaging datasets. The paper recommends a systematic architecture for ASD diagnosis using brain transformers. It also reviews recently developed brain transformer-based models, such as METAFormer, Com-BrainTF, Brain Network, ST-Transformer, STCAL, BolT, and BrainFormer, discussing their deep transfer learning architectures and results in ASD detection. Additionally, the paper summarizes and discusses brain-related transformers for various brain disorders, such as MSGTN, STAGIN, and MedTransformer, in relation to their potential usefulness in ASD. The study suggests that developing specialized transformer-based models, following the success of natural language processing (NLP), can offer new directions for image classification problems in ASD brain biomarkers learning and classification. By incorporating the attention mechanism, treating MRI modalities as sequence prediction tasks trained on brain disorder classification problems, and fine-tuned on ASD datasets, brain transformers can show a great promise in ASD diagnosis.
Collapse
Affiliation(s)
- Asrar G Alharthi
- Department of Computer Science, College of Computers and Information Technology, Taif University, Saudi Arabia.
| | - Salha M Alzahrani
- Department of Computer Science, College of Computers and Information Technology, Taif University, Saudi Arabia
| |
Collapse
|
14
|
Alharthi AG, Alzahrani SM. Multi-Slice Generation sMRI and fMRI for Autism Spectrum Disorder Diagnosis Using 3D-CNN and Vision Transformers. Brain Sci 2023; 13:1578. [PMID: 38002538 PMCID: PMC10670036 DOI: 10.3390/brainsci13111578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/03/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Researchers have explored various potential indicators of ASD, including changes in brain structure and activity, genetics, and immune system abnormalities, but no definitive indicator has been found yet. Therefore, this study aims to investigate ASD indicators using two types of magnetic resonance images (MRI), structural (sMRI) and functional (fMRI), and to address the issue of limited data availability. Transfer learning is a valuable technique when working with limited data, as it utilizes knowledge gained from a pre-trained model in a domain with abundant data. This study proposed the use of four vision transformers namely ConvNeXT, MobileNet, Swin, and ViT using sMRI modalities. The study also investigated the use of a 3D-CNN model with sMRI and fMRI modalities. Our experiments involved different methods of generating data and extracting slices from raw 3D sMRI and 4D fMRI scans along the axial, coronal, and sagittal brain planes. To evaluate our methods, we utilized a standard neuroimaging dataset called NYU from the ABIDE repository to classify ASD subjects from typical control subjects. The performance of our models was evaluated against several baselines including studies that implemented VGG and ResNet transfer learning models. Our experimental results validate the effectiveness of the proposed multi-slice generation with the 3D-CNN and transfer learning methods as they achieved state-of-the-art results. In particular, results from 50-middle slices from the fMRI and 3D-CNN showed a profound promise in ASD classifiability as it obtained a maximum accuracy of 0.8710 and F1-score of 0.8261 when using the mean of 4D images across the axial, coronal, and sagittal. Additionally, the use of the whole slices in fMRI except the beginnings and the ends of brain views helped to reduce irrelevant information and showed good performance of 0.8387 accuracy and 0.7727 F1-score. Lastly, the transfer learning with the ConvNeXt model achieved results higher than other transformers when using 50-middle slices sMRI along the axial, coronal, and sagittal planes.
Collapse
Affiliation(s)
| | - Salha M. Alzahrani
- Department of Computer Science, College of Computers and Information Technology, Taif University, Taif 21944, Saudi Arabia;
| |
Collapse
|
15
|
Tian Y, Xu G, Zhang J, Chen K, Liu S. Nodal properties of the resting-state brain functional network in childhood and adolescence. J Neuroimaging 2023; 33:1015-1023. [PMID: 37735776 DOI: 10.1111/jon.13155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND AND PURPOSE Changes in the topological properties of brain functional network nodes during childhood and adolescence can provide more detailed and intuitive information on the rules of brain development. This study aims to explore the characteristics of nodal attributes in child and adolescent brain functional networks and analyze the correlation between nodal attributes in different brain regions and age. METHODS Forty-two healthy volunteers aged 6-18 years who were right-handed primary and middle school students were recruited, and the subgroup analysis included children (6-12 years, n = 19) and adolescents (13-18 years, n = 23). Resting-state functional magnetic resonance imaging data were collected using a 3.0 Tesla MRI scanner. The topological properties of the functional brain network were analyzed using graph theory. RESULTS Compared with the children group, the degree centrality and nodal efficiency of multiple brain regions in the adolescent group were significantly increased, and the nodal shortest path was reduced (q<0.05, false discovery rate corrected). These brain regions were widely distributed in the whole brain and significantly correlated with age. Compared with the children group, reduced degree centralities were observed in the left dorsolateral fusiform gyrus, left rostral cuneus gyrus, and right medial superior occipital gyrus. CONCLUSION The transmission efficiency of the brain's core network gradually increased, and the subnetwork function gradually improved in children and adolescents with age. The functional development of each brain area in the occipital visual cortex was uneven and there was functional differentiation within the occipital visual cortex.
Collapse
Affiliation(s)
- Yu Tian
- Department of Radiology, the Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Radiology, the Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai, China
| | - Gaoqiang Xu
- Department of Radiology, the Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jing Zhang
- Department of Radiology, the Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai, China
| | - Kuntao Chen
- Department of Radiology, the Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai, China
| | - Songjiang Liu
- Department of Radiology, the Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
16
|
Lei D, Zhang T, Wu Y, Li W, Li X. Autism spectrum disorder diagnosis based on deep unrolling-based spatial constraint representation. Med Biol Eng Comput 2023; 61:2829-2842. [PMID: 37486440 DOI: 10.1007/s11517-023-02859-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 05/25/2023] [Indexed: 07/25/2023]
Abstract
Accurate diagnosis of autism spectrum disorder (ASD) is crucial for effective treatment and prognosis. Functional brain networks (FBNs) constructed from functional magnetic resonance imaging (fMRI) have become a popular tool for ASD diagnosis. However, existing model-driven approaches used to construct FBNs lack the ability to capture potential non-linear relationships between data and labels. Moreover, most existing studies treat the FBNs construction and disease classification as separate steps, leading to large inter-subject variability in the estimated FBNs and reducing the statistical power of subsequent group comparison. To address these limitations, we propose a new approach to FBNs construction called the deep unrolling-based spatial constraint representation (DUSCR) model and integrate it with a convolutional classifier to create an end-to-end framework for ASD recognition. Specifically, the model spatial constraint representation (SCR) is solved using a proximal gradient descent algorithm, and we unroll it into deep networks using the deep unrolling algorithm. Classification is then performed using a convolutional prototype learning model. We evaluated the effectiveness of the proposed method on the ABIDE I dataset and observed a significant improvement in model performance and classification accuracy. The resting state fMRI images are preprocessed into time series data and 3D coordinates of each region of interest. The data are fed into the DUSCR model, a model for building functional brain networks using deep learning instead of traditional models, that we propose, and then the outputs are fed into the convolutional classifier with prototype learning to determine whether the patient has ASD disease.
Collapse
Affiliation(s)
- Dajiang Lei
- School of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Tao Zhang
- School of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Yue Wu
- School of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Weisheng Li
- School of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Xinwei Li
- School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, China.
| |
Collapse
|
17
|
Zhang S, Yang J, Zhang Y, Zhong J, Hu W, Li C, Jiang J. The Combination of a Graph Neural Network Technique and Brain Imaging to Diagnose Neurological Disorders: A Review and Outlook. Brain Sci 2023; 13:1462. [PMID: 37891830 PMCID: PMC10605282 DOI: 10.3390/brainsci13101462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/06/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Neurological disorders (NDs), such as Alzheimer's disease, have been a threat to human health all over the world. It is of great importance to diagnose ND through combining artificial intelligence technology and brain imaging. A graph neural network (GNN) can model and analyze the brain, imaging from morphology, anatomical structure, function features, and other aspects, thus becoming one of the best deep learning models in the diagnosis of ND. Some researchers have investigated the application of GNN in the medical field, but the scope is broad, and its application to NDs is less frequent and not detailed enough. This review focuses on the research progress of GNNs in the diagnosis of ND. Firstly, we systematically investigated the GNN framework of ND, including graph construction, graph convolution, graph pooling, and graph prediction. Secondly, we investigated common NDs using the GNN diagnostic model in terms of data modality, number of subjects, and diagnostic accuracy. Thirdly, we discussed some research challenges and future research directions. The results of this review may be a valuable contribution to the ongoing intersection of artificial intelligence technology and brain imaging.
Collapse
Affiliation(s)
- Shuoyan Zhang
- School of Communication and Information Engineering, Shanghai University, Shanghai 200444, China
| | - Jiacheng Yang
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Ying Zhang
- School of Communication and Information Engineering, Shanghai University, Shanghai 200444, China
| | - Jiayi Zhong
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Wenjing Hu
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Chenyang Li
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Jiehui Jiang
- Shanghai Institute of Biomedical Engineering, Shanghai University, Shanghai 200444, China
| |
Collapse
|
18
|
Zhang H, Xu L, Yu J, Li J, Wang J. Identification of autism spectrum disorder based on functional near-infrared spectroscopy using adaptive spatiotemporal graph convolution network. Front Neurosci 2023; 17:1132231. [PMID: 36968494 PMCID: PMC10038196 DOI: 10.3389/fnins.2023.1132231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/23/2023] [Indexed: 03/12/2023] Open
Abstract
The accurate diagnosis of autism spectrum disorder (ASD) is of great practical significance in clinical practice. The spontaneous hemodynamic fluctuations were collected by functional near-infrared spectroscopy (fNIRS) from the bilateral frontal and temporal cortices of typically developing (TD) children and children with ASD. Since traditional machine learning and deep learning methods cannot make full use of the potential spatial dependence between variable pairs, and require a long time series to diagnose ASD. Therefore, we use adaptive spatiotemporal graph convolution network (ASGCN) and short time series to classify ASD and TD. To capture spatial and temporal features of fNIRS multivariable time series without the pre-defined graph, we combined the improved adaptive graph convolution network (GCN) and gated recurrent units (GRU). We conducted a series of experiments on the fNIRS dataset, and found that only using 2.1 s short time series could achieve high precision classification, with an accuracy of 95.4%. This suggests that our approach may have the potential to detect pathological signals in autism patients within 2.1 s. In different brain regions, the left frontal lobe has the best classification effect, and the abnormalities occur more frequently in left hemisphere and frontal lobe region. Moreover, we also found that there were correlations between multiple channels, which had different degrees of influence on the classification of ASD. From this, we can also generalize to a wider range, there may be potential correlations between different brain regions. This may help to better understand the cortical mechanism of ASD.
Collapse
Affiliation(s)
- Haoran Zhang
- School of Computer Engineering and Science, Shanghai University, Shanghai, China
| | - Lingyu Xu
- School of Computer Engineering and Science, Shanghai University, Shanghai, China
- Shanghai Institute for Advanced Communication and Data Science, Shanghai University, Shanghai, China
- *Correspondence: Lingyu Xu
| | - Jie Yu
- School of Computer Engineering and Science, Shanghai University, Shanghai, China
- Jie Yu
| | - Jun Li
- South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, China
- Key Lab for Behavioral Economic Science & Technology, South China Normal University, Guangzhou, China
| | - Jinhong Wang
- Department of Medical Imaging Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
19
|
Chen Z, Liu X, Yang Q, Wang YJ, Miao K, Gong Z, Yu Y, Leonov A, Liu C, Feng Z, Chuan-Peng H. Evaluation of Risk of Bias in Neuroimaging-Based Artificial Intelligence Models for Psychiatric Diagnosis: A Systematic Review. JAMA Netw Open 2023; 6:e231671. [PMID: 36877519 PMCID: PMC9989906 DOI: 10.1001/jamanetworkopen.2023.1671] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/07/2023] Open
Abstract
IMPORTANCE Neuroimaging-based artificial intelligence (AI) diagnostic models have proliferated in psychiatry. However, their clinical applicability and reporting quality (ie, feasibility) for clinical practice have not been systematically evaluated. OBJECTIVE To systematically assess the risk of bias (ROB) and reporting quality of neuroimaging-based AI models for psychiatric diagnosis. EVIDENCE REVIEW PubMed was searched for peer-reviewed, full-length articles published between January 1, 1990, and March 16, 2022. Studies aimed at developing or validating neuroimaging-based AI models for clinical diagnosis of psychiatric disorders were included. Reference lists were further searched for suitable original studies. Data extraction followed the CHARMS (Checklist for Critical Appraisal and Data Extraction for Systematic Reviews of Prediction Modeling Studies) and PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-analyses) guidelines. A closed-loop cross-sequential design was used for quality control. The PROBAST (Prediction Model Risk of Bias Assessment Tool) and modified CLEAR (Checklist for Evaluation of Image-Based Artificial Intelligence Reports) benchmarks were used to systematically evaluate ROB and reporting quality. FINDINGS A total of 517 studies presenting 555 AI models were included and evaluated. Of these models, 461 (83.1%; 95% CI, 80.0%-86.2%) were rated as having a high overall ROB based on the PROBAST. The ROB was particular high in the analysis domain, including inadequate sample size (398 of 555 models [71.7%; 95% CI, 68.0%-75.6%]), poor model performance examination (with 100% of models lacking calibration examination), and lack of handling data complexity (550 of 555 models [99.1%; 95% CI, 98.3%-99.9%]). None of the AI models was perceived to be applicable to clinical practices. Overall reporting completeness (ie, number of reported items/number of total items) for the AI models was 61.2% (95% CI, 60.6%-61.8%), and the completeness was poorest for the technical assessment domain with 39.9% (95% CI, 38.8%-41.1%). CONCLUSIONS AND RELEVANCE This systematic review found that the clinical applicability and feasibility of neuroimaging-based AI models for psychiatric diagnosis were challenged by a high ROB and poor reporting quality. Particularly in the analysis domain, ROB in AI diagnostic models should be addressed before clinical application.
Collapse
Affiliation(s)
- Zhiyi Chen
- School of Psychology, Third Military Medical University, Chongqing, China
- Experimental Research Center for Medical and Psychological Science, Third Military Medical University, Chongqing, China
| | - Xuerong Liu
- School of Psychology, Third Military Medical University, Chongqing, China
- Experimental Research Center for Medical and Psychological Science, Third Military Medical University, Chongqing, China
| | - Qingwu Yang
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yan-Jiang Wang
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Kuan Miao
- School of Psychology, Third Military Medical University, Chongqing, China
- Experimental Research Center for Medical and Psychological Science, Third Military Medical University, Chongqing, China
| | - Zheng Gong
- School of Psychology, Third Military Medical University, Chongqing, China
- Experimental Research Center for Medical and Psychological Science, Third Military Medical University, Chongqing, China
| | - Yang Yu
- School of Psychology, Third Military Medical University, Chongqing, China
| | - Artemiy Leonov
- Department of Psychology, Clark University, Worcester, Massachusetts
| | - Chunlei Liu
- School of Psychology, Qufu Normal University, Qufu, China
| | - Zhengzhi Feng
- School of Psychology, Third Military Medical University, Chongqing, China
- Experimental Research Center for Medical and Psychological Science, Third Military Medical University, Chongqing, China
| | - Hu Chuan-Peng
- School of Psychology, Nanjing Normal University, Nanjing, China
| |
Collapse
|
20
|
Previously Marzena Szkodo MOR, Micai M, Caruso A, Fulceri F, Fazio M, Scattoni ML. Technologies to support the diagnosis and/or treatment of neurodevelopmental disorders: A systematic review. Neurosci Biobehav Rev 2023; 145:105021. [PMID: 36581169 DOI: 10.1016/j.neubiorev.2022.105021] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/13/2022] [Accepted: 12/23/2022] [Indexed: 12/27/2022]
Abstract
In recent years, there has been a great interest in utilizing technology in mental health research. The rapid technological development has encouraged researchers to apply technology as a part of a diagnostic process or treatment of Neurodevelopmental Disorders (NDDs). With the large number of studies being published comes an urgent need to inform clinicians and researchers about the latest advances in this field. Here, we methodically explore and summarize findings from studies published between August 2019 and February 2022. A search strategy led to the identification of 4108 records from PubMed and APA PsycInfo databases. 221 quantitative studies were included, covering a wide range of technologies used for diagnosis and/or treatment of NDDs, with the biggest focus on Autism Spectrum Disorder (ASD). The most popular technologies included machine learning, functional magnetic resonance imaging, electroencephalogram, magnetic resonance imaging, and neurofeedback. The results of the review indicate that technology-based diagnosis and intervention for NDD population is promising. However, given a high risk of bias of many studies, more high-quality research is needed.
Collapse
Affiliation(s)
| | - Martina Micai
- Research Coordination and Support Service, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Angela Caruso
- Research Coordination and Support Service, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Francesca Fulceri
- Research Coordination and Support Service, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Maria Fazio
- Department of Mathematics, Computer Science, Physics and Earth Sciences (MIFT), University of Messina, Viale F. Stagno d'Alcontres, 31, 98166 Messina, Italy.
| | - Maria Luisa Scattoni
- Research Coordination and Support Service, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| |
Collapse
|
21
|
Deng L, Fan Z, Xiao X, Liu H, Zhang J. Dual-Channel Heterogeneous Graph Neural Network for Predicting microRNA-Mediated Drug Sensitivity. J Chem Inf Model 2022; 62:5929-5937. [PMID: 36413746 DOI: 10.1021/acs.jcim.2c01060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Many studies have confirmed that microRNAs (miRNAs) are mediated in the sensitivity of tumor cells to anticancer drugs. MiRNAs are emerging as a type of promising therapeutic targets to overcome drug resistance. However, there is limited attention paid to the computational prediction of the associations between miRNAs and drug sensitivity. In this work, we proposed a heterogeneous network-based representation learning method to predict miRNA-drug sensitivity associations (DGNNMDA). An miRNA-drug heterogeneous network was constructed by integrating miRNA similarity network, drug similarity network, and experimentally validated miRNA-drug sensitivity associations. Next, we developed a dual-channel heterogeneous graph neural network model to perform feature propagation among the homogeneous and heterogeneous nodes so that our method can learn expressive representations for miRNA and drug nodes. On two benchmark datasets, our method outperformed other seven competitive methods. We also verified the effectiveness of the feature propagations on homogeneous and heterogeneous nodes. Moreover, we have conducted two case studies to verify the reliability of our methods and tried to reveal the regulatory mechanism of miRNAs mediated in drug sensitivity. The source code and datasets are freely available at https://github.com/19990915fzy/DGNNMDA.
Collapse
Affiliation(s)
- Lei Deng
- School of Computer Science and Engineering, Central South University, Changsha410083, China
| | - Ziyu Fan
- School of Computer Science and Engineering, Central South University, Changsha410083, China
| | - Xiaojun Xiao
- Software School, Xinjiang University, Urumqi830091, China
| | - Hui Liu
- School of Computer Science and Technology, Nanjing Tech University, Nanjing211816, China
| | - Jiaxuan Zhang
- Department of Electrical and Computer Engineering, University of California, San Diego, San Diego, California92161, United States
| |
Collapse
|
22
|
Deng X, Zhang J, Liu R, Liu K. Classifying ASD based on time-series fMRI using spatial-temporal transformer. Comput Biol Med 2022; 151:106320. [PMID: 36442277 DOI: 10.1016/j.compbiomed.2022.106320] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 10/11/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
Abstract
As the prevalence of autism spectrum disorder (ASD) increases globally, more and more patients need to receive timely diagnosis and treatment to alleviate their suffering. However, the current diagnosis method of ASD still adopts the subjective symptom-based criteria through clinical observation, which is time-consuming and costly. In recent years, functional magnetic resonance imaging (fMRI) neuroimaging techniques have emerged to facilitate the identification of potential biomarkers for diagnosing ASD. In this study, we developed a deep learning framework named spatial-temporal Transformer (ST-Transformer) to distinguish ASD subjects from typical controls based on fMRI data. Specifically, a linear spatial-temporal multi-headed attention unit is proposed to obtain the spatial and temporal representation of fMRI data. Moreover, a Gaussian GAN-based data balancing method is introduced to solve the data unbalance problem in real-world ASD datasets for subtype ASD diagnosis. Our proposed ST-Transformer is evaluated on a large cohort of subjects from two independent datasets (ABIDE I and ABIDE II) and achieves robust accuracies of 71.0% and 70.6%, respectively. Compared with state-of-the-art methods, our results demonstrate competitive performance in ASD diagnosis.
Collapse
Affiliation(s)
- Xin Deng
- The Key Laboratory of Data Engineering and Visual Computing, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China
| | - Jiahao Zhang
- The Key Laboratory of Data Engineering and Visual Computing, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China
| | - Rui Liu
- Department of Computer Science, City University of Hong Kong, 999077, Hong Kong, China.
| | - Ke Liu
- The Key Laboratory of Data Engineering and Visual Computing, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China
| |
Collapse
|
23
|
Yang T, Al-Duailij MA, Bozdag S, Saeed F. Classification of Autism Spectrum Disorder Using rs-fMRI data and Graph Convolutional Networks. PROCEEDINGS : ... IEEE INTERNATIONAL CONFERENCE ON BIG DATA. IEEE INTERNATIONAL CONFERENCE ON BIG DATA 2022; 2022:3131-3138. [PMID: 38952948 PMCID: PMC11215804 DOI: 10.1109/bigdata55660.2022.10021070] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Autism spectrum disorder (ASD) affects large number of children and adults in the US, and worldwide. Early and quick diagnosis of ASD can improve the quality of life significantly both for patients and their families. Prior research provides strong evidence that structural and functional magnetic resonance imaging (MRI) data collected from individuals with ASD exhibit distinguishing characteristics that differ in local and global, spatial and temporal neural patterns of the brain - and therefore can be used for diagnostic purposes for various mental disorders. However, the data from MRI are high-dimensional and advanced methods are needed to make sense out of these datasets. In this paper, we present a novel model based on graph convolutional network (GCN) that can utilize resting state fMRI (rs-fMRI) data to classify ASD subjects from health controls (HC). In addition to using the graph from traditional correlation matrices, our proposed GCN model incorporates graphlet topological counting as one of the training features. Our results show that graphlets can preserve the topological information of the graphs obtained from fMRI data. Combined with our GCN, the graphlets retain enough topological information to differentiate between the ASD and HC. Our proposed model gives an average accuracy of 64.27% on the whole ABIDE-I data sets (1035 subjects) and highest site-specific accuracy of 75.9%, which is comparable to other state-of-the-art methods - while potentially open to being more interpretable.
Collapse
Affiliation(s)
- Tianren Yang
- Knight Foundation School of Computing and Information Sciences, Florida International University (FIU), Miami, Florida
| | - Mai A Al-Duailij
- Princess Nourah Bint Abdul Rahman University, Riyadh, Saudi Arabia
| | - Serdar Bozdag
- Department of Computer Science and Engineering, Department of Mathematics, BioDiscovery Institute, University of North Texas, Denton, Texas
| | - Fahad Saeed
- Knight Foundation School of Computing and Information Sciences, Florida International University (FIU), Miami, Florida
| |
Collapse
|
24
|
Jia M, Liu W, Duan J, Chen L, Chen CLP, Wang Q, Zhou Z. Efficient graph convolutional networks for seizure prediction using scalp EEG. Front Neurosci 2022; 16:967116. [PMID: 35979333 PMCID: PMC9376592 DOI: 10.3389/fnins.2022.967116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 07/08/2022] [Indexed: 11/23/2022] Open
Abstract
Epilepsy is a chronic brain disease that causes persistent and severe damage to the physical and mental health of patients. Daily effective prediction of epileptic seizures is crucial for epilepsy patients especially those with refractory epilepsy. At present, a large number of deep learning algorithms such as Convolutional Neural Networks and Recurrent Neural Networks have been used to predict epileptic seizures and have obtained better performance than traditional machine learning methods. However, these methods usually transform the Electroencephalogram (EEG) signal into a Euclidean grid structure. The conversion suffers from loss of adjacent spatial information, which results in deep learning models requiring more storage and computational consumption in the process of information fusion after information extraction. This study proposes a general Graph Convolutional Networks (GCN) model architecture for predicting seizures to solve the problem of oversized seizure prediction models based on exploring the graph structure of EEG signals. As a graph classification task, the network architecture includes graph convolution layers that extract node features with one-hop neighbors, pooling layers that summarize abstract node features; and fully connected layers that implement classification, resulting in superior prediction performance and smaller network size. The experiment shows that the model has an average sensitivity of 96.51%, an average AUC of 0.92, and a model size of 15.5 k on 18 patients in the CHB-MIT scalp EEG dataset. Compared with traditional deep learning methods, which require a large number of parameters and computational effort and are demanding in terms of storage space and energy consumption, this method is more suitable for implementation on compact, low-power wearable devices as a standard process for building a generic low-consumption graph network model on similar biomedical signals. Furthermore, the edge features of graphs can be used to make a preliminary determination of locations and types of discharge, making it more clinically interpretable.
Collapse
Affiliation(s)
- Manhua Jia
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing, China
| | - Wenjian Liu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Junwei Duan
- College of Information Science and Technology, Jinan University, Guangzhou, China
| | - Long Chen
- Faculty of Science and Technology, University of Macau, Taipa, Macau SAR, China
| | - C. L. Philip Chen
- School of Computer Science and Engineering, South China University of Technology, Guangzhou, China
| | - Qun Wang
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing, China
- *Correspondence: Qun Wang
| | - Zhiguo Zhou
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing, China
- Zhiguo Zhou
| |
Collapse
|
25
|
Wang Y, Fu Y, Luo X. Identification of Pathogenetic Brain Regions via Neuroimaging Data for Diagnosis of Autism Spectrum Disorders. Front Neurosci 2022; 16:900330. [PMID: 35655751 PMCID: PMC9152096 DOI: 10.3389/fnins.2022.900330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Autism spectrum disorder (ASD) is a kind of neurodevelopmental disorder that often occurs in children and has a hidden onset. Patients usually have lagged development of communication ability and social behavior and thus suffer an unhealthy physical and mental state. Evidence has indicated that diseases related to ASD have commonalities in brain imaging characteristics. This study aims to study the pathogenesis of ASD based on brain imaging data to locate the ASD-related brain regions. Specifically, we collected the functional magnetic resonance image data of 479 patients with ASD and 478 normal subjects matched in age and gender and used a machine-learning framework named random support vector machine cluster to extract distinctive brain regions from the preprocessed data. According to the experimental results, compared with other existing approaches, the method used in this study can more accurately distinguish patients from normal individuals based on brain imaging data. At the same time, this study found that the development of ASD was highly correlated with certain brain regions, e.g., lingual gyrus, superior frontal gyrus, medial gyrus, insular lobe, and olfactory cortex. This study explores the effectiveness of a novel machine-learning approach in the study of ASD brain imaging and provides a reference brain area for the medical research and clinical treatment of ASD.
Collapse
Affiliation(s)
- Yu Wang
- Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing, Hunan Normal University, Changsha, China
- College of Information Science and Engineering, Hunan Normal University, Changsha, China
- Hunan Xiangjiang Artificial Intelligence Academy, Changsha, China
| | - Yu Fu
- Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing, Hunan Normal University, Changsha, China
- College of Information Science and Engineering, Hunan Normal University, Changsha, China
- Hunan Xiangjiang Artificial Intelligence Academy, Changsha, China
- *Correspondence: Yu Fu
| | - Xun Luo
- Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing, Hunan Normal University, Changsha, China
- College of Information Science and Engineering, Hunan Normal University, Changsha, China
- Hunan Xiangjiang Artificial Intelligence Academy, Changsha, China
| |
Collapse
|
26
|
Wang X, Li Q, Liu Y, Du Z, Jin R. Drug repositioning of COVID-19 based on mixed graph network and ion channel. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2022; 19:3269-3284. [PMID: 35341251 DOI: 10.3934/mbe.2022151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Research on the relationship between drugs and targets is the key to precision medicine. Ion channel is a kind of important drug targets. Aiming at the urgent needs of corona virus disease 2019 (COVID-19) treatment and drug development, this paper designed a mixed graph network model to predict the affinity between ion channel targets of COVID-19 and drugs. According to the simplified molecular input line entry specification (SMILES) code of drugs, firstly, the atomic features were extracted to construct the point sets, and edge sets were constructed according to atomic bonds. Then the undirected graph with atomic features was generated by RDKit tool and the graph attention layer was used to extract the drug feature information. Five ion channel target proteins were screened from the whole SARS-CoV-2 genome sequences of NCBI database, and the protein features were extracted by convolution neural network (CNN). Using attention mechanism and graph convolutional network (GCN), the extracted drug features and target features information were connected. After two full connection layers operation, the drug-target affinity was output, and model was obtained. Kiba dataset was used to train the model and determine the model parameters. Compared with DeepDTA, WideDTA, graph attention network (GAT), GCN and graph isomorphism network (GIN) models, it was proved that the mean square error (MSE) of the proposed model was decreased by 0.055, 0.04, 0.001, 0.046, 0.013 and the consistency index (CI) was increased by 0.028, 0.016, 0.003, 0.03 and 0.01, respectively. It can predict the drug-target affinity more accurately. According to the prediction results of drug-target affinity of SARS-CoV-2 ion channel targets, seven kinds of small molecule drugs acting on five ion channel targets were obtained, namely SCH-47112, Dehydroaltenusin, alternariol 5-o-sulfate, LPA1 antagonist 1, alternariol, butin, and AT-9283.These drugs provide a reference for drug repositioning and precise treatment of COVID-19.
Collapse
Affiliation(s)
- Xianfang Wang
- Henan Institute of Technology, Xinxiang 453003, China
- College of Computer and Information Engineering, Henan Normal University, Xinxiang 453007, China
| | - Qimeng Li
- College of Computer and Information Engineering, Henan Normal University, Xinxiang 453007, China
| | - Yifeng Liu
- Henan Institute of Technology, Xinxiang 453003, China
| | - Zhiyong Du
- Henan Institute of Technology, Xinxiang 453003, China
| | - Ruixia Jin
- SanQuan Medical College, Xinxiang 453003, China
| |
Collapse
|