1
|
Meng L, Zhou B, Liu H, Chen Y, Yuan R, Chen Z, Luo S, Chen H. Advancing toxicity studies of per- and poly-fluoroalkyl substances (pfass) through machine learning: Models, mechanisms, and future directions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174201. [PMID: 38936709 DOI: 10.1016/j.scitotenv.2024.174201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024]
Abstract
Perfluorinated and perfluoroalkyl substances (PFASs), encompassing a vast array of isomeric chemicals, are recognized as typical emerging contaminants with direct or potential impacts on human health and the ecological environment. With the complex and elusive toxicological profiles of PFASs, machine learning (ML) has been increasingly employed in their toxicity studies due to its proficiency in prediction and data analytics. This integration is poised to become a predominant trend in environmental toxicology, propelled by the swift advancements in computational technology. This review diligently examines the literature to encapsulate the varied objectives of employing ML in the toxicity studies of PFASs: (1) Utilizing ML to establish Quantitative Structure-Activity Relationship (QSAR) models for PFASs with diverse toxicity endpoints, facilitating the targeted toxicity prediction of unidentified PFASs; (2) Investigating and substantiating the Adverse Outcome Pathway (AOP) through the synergy of ML and traditional toxicological methods, with this refining the toxicity assessment framework for PFASs; (3) Dissecting and elucidating the features of established ML models to advance Open Research into the toxicity of PFASs, with a primary focus on determinants and mechanisms. The discourse extends to an in-depth examination of ML studies, segregating findings based on their distinct application trajectories. Given that ML represents a nascent paradigm within PFASs research, this review delineates the collective challenges encountered in the ML-mediated study of PFAS toxicity and proffers strategic guidance for ensuing investigations.
Collapse
Affiliation(s)
- Lingxuan Meng
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Beihai Zhou
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Haijun Liu
- School of Resources and Environment, Anqing Normal University, Anqing, China.
| | - Yuefang Chen
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Rongfang Yuan
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhongbing Chen
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Praha-Suchdol, Czech Republic.
| | - Shuai Luo
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Huilun Chen
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
2
|
Combining machine‐learning and molecular‐modeling methods for drug‐target affinity predictions. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2022. [DOI: 10.1002/wcms.1653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
3
|
Puch-Giner I, Molina A, Municoy M, Pérez C, Guallar V. Recent PELE Developments and Applications in Drug Discovery Campaigns. Int J Mol Sci 2022; 23:ijms232416090. [PMID: 36555731 PMCID: PMC9788188 DOI: 10.3390/ijms232416090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Computer simulation techniques are gaining a central role in molecular pharmacology. Due to several factors, including the significant improvements of traditional molecular modelling, the irruption of machine learning methods, the massive data generation, or the unlimited computational resources through cloud computing, the future of pharmacology seems to go hand in hand with in silico predictions. In this review, we summarize our recent efforts in such a direction, centered on the unconventional Monte Carlo PELE software and on its coupling with machine learning techniques. We also provide new data on combining two recent new techniques, aquaPELE capable of exhaustive water sampling and fragPELE, for fragment growing.
Collapse
Affiliation(s)
- Ignasi Puch-Giner
- Barcelona Supercomputing Center, Plaça d’Eusebi Güell, 1-3, 08034 Barcelona, Spain
| | - Alexis Molina
- Nostrum Biodiscovery S.L., Av. de Josep Tarradellas, 8-10, 3-2, 08029 Barcelona, Spain
| | - Martí Municoy
- Barcelona Supercomputing Center, Plaça d’Eusebi Güell, 1-3, 08034 Barcelona, Spain
- Nostrum Biodiscovery S.L., Av. de Josep Tarradellas, 8-10, 3-2, 08029 Barcelona, Spain
| | - Carles Pérez
- Nostrum Biodiscovery S.L., Av. de Josep Tarradellas, 8-10, 3-2, 08029 Barcelona, Spain
| | - Victor Guallar
- Barcelona Supercomputing Center, Plaça d’Eusebi Güell, 1-3, 08034 Barcelona, Spain
- Nostrum Biodiscovery S.L., Av. de Josep Tarradellas, 8-10, 3-2, 08029 Barcelona, Spain
- Correspondence:
| |
Collapse
|
4
|
New Insights into Ion Channels: Predicting hERG-Drug Interactions. Int J Mol Sci 2022; 23:ijms231810732. [PMID: 36142644 PMCID: PMC9503154 DOI: 10.3390/ijms231810732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/31/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Drug-induced long QT syndrome can be a very dangerous side effect of existing and developmental drugs. In this work, a model proposed two decades ago addressing the ion specificity of potassium channels is extended to the human ether-à-gogo gene (hERG). hERG encodes the protein that assembles into the potassium channel responsible for the delayed rectifier current in ventricular cardiac myocytes that is often targeted by drugs associated with QT prolongation. The predictive value of this model can guide a rational drug design decision early in the drug development process and enhance NCE (New Chemical Entity) retention. Small molecule drugs containing a nitrogen that can be protonated to afford a formal +1 charge can interact with hERG to prevent the repolarization of outward rectifier currents. Low-level ab initio calculations are employed to generate electronic features of the drug molecules that are known to interact with hERG. These calculations were employed to generate structure–activity relationships (SAR) that predict whether a small molecule drug containing a protonated nitrogen has the potential to interact with and inhibit the activity of the hERG potassium channels of the heart. The model of the mechanism underlying the ion specificity of potassium channels offers predictive value toward optimizing drug design and, therefore, minimizes the effort and expense invested in compounds with the potential for life-threatening inhibitory activity of the hERG potassium channel.
Collapse
|