1
|
Kumar GS, Sharma K, Mishra R, Azhar EI, Dwivedi VD, Agrawal S. Overcoming aminoglycoside antibiotic resistance in Mycobacterium tuberculosis by targeting Eis protein. In Silico Pharmacol 2025; 13:36. [PMID: 40051485 PMCID: PMC11880469 DOI: 10.1007/s40203-025-00325-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 02/17/2025] [Indexed: 03/09/2025] Open
Abstract
Tuberculosis (TB), a major global health concern, even after significant advancements in diagnosis and treatment, causing millions of deaths annually and severely impacting the healthcare systems of developing nations. Moreover, the rise of drug-resistant strains further diminishes the efforts made to control the infection and to overcome this scenario, highly effective drugs are required. Identifying new therapeutic uses of existing drugs through drug repurposing can significantly shorten the time and cost. In the current study, using a computational experimental approach, near about 3104 FDA-approved drugs and active pharmaceutical ingredients from Selleckchem database were screened against Enhanced intracellular survival (Eis) protein, responsible for causing drug resistance by inhibiting the aminoglycoside drug activity. Based on the three-level screening and Molecular Mechanics generalized Born surface area (MM/GBSA) scores, five drugs including Isavuconazonium sulfate, Cefotiam Hexetil Hydrochloride, Enzastaurin (LY317615), Salbutamol sulfate (Albuterol), and Osimertinib (AZD9291) were considered as potential Eis inhibitors. The 500 ns MD simulation results revealed that all these Eis-drug complexes are stable, with minor structural arrangements and stable binding patterns. The PCA and FEL analysis also confirmed the structural stability of the complexes. Overall, these drugs displayed promising results as Eis inhibitors, that can be regarded as suitable candidates for experimental validation.
Collapse
Affiliation(s)
- Geethu S. Kumar
- Centre for Development of Biomaterials and Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh 201310 India
| | - Kuldeep Sharma
- Centre of Research Impact and Outcome, Chitkara University, Rajpura, Punjab 140401 India
| | - Richa Mishra
- Department of Computer Engineering, Faculty of Engineering and Technology, Parul University, Vadodara, Gujarat 391760 India
| | - Esam Ibraheem Azhar
- Special Infectious Agents Unit– BSL3, King Fahd Medical Research Center, King Abdulaziz University, 21362 Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, 21362 Jeddah, Saudi Arabia
| | - Vivek Dhar Dwivedi
- Center for Global Health Research, Saveetha Institute of Medical and Technical Sciences, Saveetha Medical College and Hospitals, Saveetha University, Chennai, India
- Bioinformatics Research Division, Quanta Calculus, Greater Noida, Uttar Pradesh 201310 India
| | - Sharad Agrawal
- Centre for Development of Biomaterials and Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh 201310 India
| |
Collapse
|
2
|
Balkrishna A, Sharma Y, Dabas S, Arya V, Dabas A. Molecular Mechanism of Cynodon dactylon Phytosterols Targeting MAPK3 and PARP1 to Combat Epithelial Ovarian Cancer: A Multifaceted Computational Approach. Cell Biochem Biophys 2024; 82:2625-2650. [PMID: 38961033 DOI: 10.1007/s12013-024-01375-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2024] [Indexed: 07/05/2024]
Abstract
Epithelial Ovarian Cancer (EOC) presents a global health concern, necessitating the development of innovative therapeutic strategies to combat its impact. This study was employed to investigate the unexplored therapeutic efficacy of Cynodon dactylon phytochemicals against EOC using a multifaceted computational approach. A total of 19 out of 89 rigorously curated phytochemicals were assessed as potential drug targets via ADMET profiling, while protein-protein interaction analysis scrutinized the top 20 hub genes among 264 disease targets, revealing their involvement in cancer-related pathways and underscoring their significance in EOC pathogenesis. In molecular docking, Stigmasterol acetate showed the highest binding affinity (-10.9 kcal/mol) with Poly [ADP-ribose] polymerase-1 (PDB: 1UK1), while Arundoin and Beta-Sitosterol exhibited strong affinities (-10.4 kcal/mol and -10.1 kcal/mol, respectively); additionally, Beta-Sitosterol interacting with Mitogen-activated protein kinase 3 (PDB: 4QTB) showed a binding affinity of -10.1 kcal/mol, forming 2 hydrogen bonds and a total of 10 bonds with 10 residues. Molecular dynamics simulations exhibited the significant structural stability of the Beta-Sitosterol-4QTB complex with superior binding free energy (-36.61 kcal/mol) among the three complexes. This study identified C. dactylon phytosterols, particularly Beta-Sitosterol, as effective in targeting MAPK3 and PARP1 to combat EOC, laying the groundwork for further experimental validation and drug development efforts.
Collapse
Affiliation(s)
- Acharya Balkrishna
- Patanjali Herbal Research Department, Patanjali Research Foundation, Haridwar, 249405, Uttarakhand, India
- University of Patanjali, Patanjali Yogpeeth, Haridwar, 249405, Uttarakhand, India
| | - Yoganshi Sharma
- Patanjali Herbal Research Department, Patanjali Research Foundation, Haridwar, 249405, Uttarakhand, India
| | - Shakshi Dabas
- Patanjali Herbal Research Department, Patanjali Research Foundation, Haridwar, 249405, Uttarakhand, India
| | - Vedpriya Arya
- Patanjali Herbal Research Department, Patanjali Research Foundation, Haridwar, 249405, Uttarakhand, India
- University of Patanjali, Patanjali Yogpeeth, Haridwar, 249405, Uttarakhand, India
| | - Anurag Dabas
- Patanjali Herbal Research Department, Patanjali Research Foundation, Haridwar, 249405, Uttarakhand, India.
| |
Collapse
|
3
|
Wang K, Zhang T, Li X, Zhang X, Li R, Pan B, Deng J. Identification of hub genes and potential therapeutic mechanisms related to HPV positive head and neck squamous carcinoma based on full transcriptomic detection and ceRNA network construction. Gene 2024; 910:148321. [PMID: 38428621 DOI: 10.1016/j.gene.2024.148321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 03/03/2024]
Abstract
Infection with human papillomavirus (HPV) is a major risk factor for head and neck squamous cell carcinoma (HNSCC). The objective of this study is to investigate the gene expression profiles and signaling pathways that are specific to HPV-positive HNSCC (HPV+ HNSCC). Moreover, a competing endogenous RNA (ceRNA) network analysis was utilized to identify the core gene of HPV+ HNSCC and potential targeted therapeutic drugs. Transcriptome sequencing analysis identified 3,253 coding RNAs and 3,903 non-coding RNAs (ncRNAs) that exhibited preferentially expressed in HPV+ HNSCC. Four key signaling pathways were selected through pathway enrichment analysis. By combining ceRNA network and protein-protein interaction (PPI) network topology analysis, RNA Polymerase II Associated Protein 2 (RPAP2), which also exhibited high expression in HPV+ HNSCC based on the TCGA database, was identified as the hub gene. Gene set enrichment analysis (GSEA) results revealed RPAP2's involvement in various signaling pathways, encompassing basal transcription factors, ubiquitin-mediated proteolysis, adherens junction, other glycan degradation, ATP-binding cassette (ABC) transporters, and oglycan biosynthesis. Five potential small molecule targeted drugs (enzastaurin, brequinar, talinolol, phenylbutazone, and afuresertib) were identified using the cMAP database, with enzastaurin showing the highest affinity for RPAP2. Cellular functional experiments confirmed the inhibitory effect of enzastaurin on cell viability of HPV+ HNSCC and RPAP2 expression levels. Additionally, enzastaurin treatment suppressed the expression levels of the top-ranked long non-coding RNA (lncRNA), circular RNA (circRNA), and microRNA (miRNA) in the ceRNA network. This study based on the ceRNA network provides valuable insights into the molecular mechanisms and potential therapeutic strategies for HPV+ HNSCC, and provide theoretical basis for the exploration of HPV+ HNSCC biomarkers and the development of targeted drugs.
Collapse
Affiliation(s)
- Kunpeng Wang
- The School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
| | - Tingting Zhang
- The School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
| | - Xia Li
- The School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
| | - Xinran Zhang
- The School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
| | - Rui Li
- Department of Biochemistry and Molecular Biology, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China.
| | - Boyu Pan
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China.
| | - Jiayin Deng
- The School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
4
|
Otero-Carrasco B, Ugarte Carro E, Prieto-Santamaría L, Diaz Uzquiano M, Caraça-Valente Hernández JP, Rodríguez-González A. Identifying patterns to uncover the importance of biological pathways on known drug repurposing scenarios. BMC Genomics 2024; 25:43. [PMID: 38191292 PMCID: PMC10775474 DOI: 10.1186/s12864-023-09913-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 12/15/2023] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND Drug repurposing plays a significant role in providing effective treatments for certain diseases faster and more cost-effectively. Successful repurposing cases are mostly supported by a classical paradigm that stems from de novo drug development. This paradigm is based on the "one-drug-one-target-one-disease" idea. It consists of designing drugs specifically for a single disease and its drug's gene target. In this article, we investigated the use of biological pathways as potential elements to achieve effective drug repurposing. METHODS Considering a total of 4214 successful cases of drug repurposing, we identified cases in which biological pathways serve as the underlying basis for successful repurposing, referred to as DREBIOP. Once the repurposing cases based on pathways were identified, we studied their inherent patterns by considering the different biological elements associated with this dataset, as well as the pathways involved in these cases. Furthermore, we obtained gene-disease association values to demonstrate the diminished significance of the drug's gene target in these repurposing cases. To achieve this, we compared the values obtained for the DREBIOP set with the overall association values found in DISNET, as well as with the drug's target gene (DREGE) based repurposing cases using the Mann-Whitney U Test. RESULTS A collection of drug repurposing cases, known as DREBIOP, was identified as a result. DREBIOP cases exhibit distinct characteristics compared with DREGE cases. Notably, DREBIOP cases are associated with a higher number of biological pathways, with Vitamin D Metabolism and ACE inhibitors being the most prominent pathways. Additionally, it was observed that the association values of GDAs in DREBIOP cases were significantly lower than those in DREGE cases (p-value < 0.05). CONCLUSIONS Biological pathways assume a pivotal role in drug repurposing cases. This investigation successfully revealed patterns that distinguish drug repurposing instances associated with biological pathways. These identified patterns can be applied to any known repurposing case, enabling the detection of pathway-based repurposing scenarios or the classical paradigm.
Collapse
Affiliation(s)
- Belén Otero-Carrasco
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223, Spain
- ETS Ingenieros Informáticos, Universidad Politécnica de Madrid, Boadilla del Monte, 28660, Spain
| | - Esther Ugarte Carro
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223, Spain
| | - Lucía Prieto-Santamaría
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223, Spain
- ETS Ingenieros Informáticos, Universidad Politécnica de Madrid, Boadilla del Monte, 28660, Spain
| | - Marina Diaz Uzquiano
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223, Spain
| | | | - Alejandro Rodríguez-González
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223, Spain.
- ETS Ingenieros Informáticos, Universidad Politécnica de Madrid, Boadilla del Monte, 28660, Spain.
| |
Collapse
|
5
|
Balkrishna A, Sharma D, Thapliyal M, Arya V, Dabas A. Unraveling the therapeutic potential of Senna singueana phytochemicals to attenuate pancreatic cancer using protein-protein interactions, molecular docking, and MD simulation. In Silico Pharmacol 2023; 12:3. [PMID: 38108042 PMCID: PMC10719185 DOI: 10.1007/s40203-023-00179-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/05/2023] [Indexed: 12/19/2023] Open
Abstract
Pancreatic cancer (PC) presents challenges due to limited treatment options and patients seek complementary therapies alongside conventional treatments to improve well-being. This study uses computational drug discovery approaches to find potential phytochemicals from S. singueana for PC treatment. Among the 38 phytochemicals screened from S. singueana, specific inhibitors against PC were selected. Protein-protein interaction (PPI) network analysis highlighted key targets with high degrees, including PTEN (8) and PTK2 (7) genes, along with their respective proteins 5BZX and 3BZ3, which were employed for molecular docking studies. 1-methylchrysene and 3-methyl-1,8,9-anthracenetriol showed strong binding affinities of - 9.2 and - 8.1 Kcal/mol, respectively. Molecular dynamics simulations lasting 300 ns assessed structural stability and interaction energy of compound-target dockings: 1-methylchrysene-PTEN and 3-methyl-1,8,9-anthracenetriol-PTK2. In molecular dynamics simulations, the 3-methyl-1,8,9-anthracenetriol-PTK2 complex showed lower RMSD, RMSF, radius of gyration, solvent-accessible surface area, and more hydrogen bonds than the 1-methylchrysene-PTEN complex. The 3-methyl-1,8,9-anthracenetriol-PTK2 complex exhibited significantly stronger binding with a binding free energy (ΔG) of - 21.92 kcal/mol compared to the less favourable ΔG of - 10.65 kcal/mol for the 1-methylchrysene-PTEN complex. The consistent and stable binding interaction observed in the 3-methyl-1,8,9-anthracenetriol-PTK2 complex highlights its potential as a potent inhibitor of Focal Adhesion Kinase 1. Consequently, it emerges as a promising lead compound for the development of pancreatic cancer therapeutics. Conversely, the fluctuations observed in the 1-methylchrysene-PTEN complex indicate a less stable binding interaction. This indicates the potential of 3-methyl-1,8,9-anthracenetriol as a primary candidate for pancreatic cancer treatment. These findings improve our grasp of S. singueana's multi-target effects and its promise in addressing pancreatic cancer. Nevertheless, additional in-vivo and in-vitro studies are required to validate their effectiveness and therapeutic potential. Supplementary Information The online version contains supplementary material available at 10.1007/s40203-023-00179-9.
Collapse
Affiliation(s)
- Acharya Balkrishna
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar, Uttarakhand 249405 India
- University of Patanjali, Patanjali Yogpeeth, Haridwar, Uttarakhand 249405 India
| | - Darshita Sharma
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar, Uttarakhand 249405 India
| | - Manisha Thapliyal
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar, Uttarakhand 249405 India
| | - Vedpriya Arya
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar, Uttarakhand 249405 India
- University of Patanjali, Patanjali Yogpeeth, Haridwar, Uttarakhand 249405 India
| | - Anurag Dabas
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar, Uttarakhand 249405 India
| |
Collapse
|