1
|
Sun L, Yin Z, Lu L. ISLRWR: A network diffusion algorithm for drug-target interactions prediction. PLoS One 2025; 20:e0302281. [PMID: 39883675 PMCID: PMC11781719 DOI: 10.1371/journal.pone.0302281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/01/2024] [Indexed: 02/01/2025] Open
Abstract
Machine learning techniques and computer-aided methods are now widely used in the pre-discovery tasks of drug discovery, effectively improving the efficiency of drug development and reducing the workload and cost. In this study, we used multi-source heterogeneous network information to build a network model, learn the network topology through multiple network diffusion algorithms, and obtain compressed low-dimensional feature vectors for predicting drug-target interactions (DTIs). We applied the metropolis-hasting random walk (MHRW) algorithm to improve the performance of the random walk with restart (RWR) algorithm, forming the basis by which the self-loop probability of the current node is removed. Additionally, the propagation efficiency of the MHRW was improved using the improved metropolis-hasting random walk (IMRWR) algorithm, facilitating network deep sampling. Finally, we proposed a correction of the transfer probability of the entire network after increasing the self-loop rate of isolated nodes to form the ISLRWR algorithm. Notably, the ISLRWR algorithm improved the area under the receiver operating characteristic curve (AUROC) by 7.53 and 5.72%, and the area under the precision-recall curve (AUPRC) by 5.95 and 4.19% compared to the RWR and MHRW algorithms, respectively, in predicting DTIs performance. Moreover, after excluding the interference of homologous proteins (popular drugs or targets may lead to inflated prediction results), the ISLRWR algorithm still showed a significant performance improvement.
Collapse
Affiliation(s)
- Lu Sun
- School of Mathematics, Physics and Statistics, Institute for Frontier Medical Technology, Center of Intelligent Computing and Applied Statistics, Shanghai University of Engineering Science, Shanghai, China
| | - Zhixiang Yin
- School of Mathematics, Physics and Statistics, Institute for Frontier Medical Technology, Center of Intelligent Computing and Applied Statistics, Shanghai University of Engineering Science, Shanghai, China
| | - Lin Lu
- Shanghai Xinhao Information Technology Co., Ltd., Shanghai, China
| |
Collapse
|
2
|
Tu X, Zou Z, Li J, Zeng S, Luo Z, Li G, Gao Y, Zhang K. Artificial intelligence-enabled discovery of a RIPK3 inhibitor with neuroprotective effects in an acute glaucoma mouse model. Chin Med J (Engl) 2025; 138:172-184. [PMID: 39719694 PMCID: PMC11745860 DOI: 10.1097/cm9.0000000000003387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Indexed: 12/26/2024] Open
Abstract
BACKGROUND Retinal ganglion cell (RGC) death caused by acute ocular hypertension is an important characteristic of acute glaucoma. Receptor-interacting protein kinase 3 (RIPK3) that mediates necroptosis is a potential therapeutic target for RGC death. However, the current understanding of the targeting agents and mechanisms of RIPK3 in the treatment of glaucoma remains limited. Notably, artificial intelligence (AI) technologies have significantly advanced drug discovery. This study aimed to discover RIPK3 inhibitor with AI assistance. METHODS An acute ocular hypertension model was used to simulate pathological ocular hypertension in vivo . We employed a series of AI methods, including large language and graph neural network models, to identify the target compounds of RIPK3. Subsequently, these target candidates were validated using molecular simulations (molecular docking, absorption, distribution, metabolism, excretion, and toxicity [ADMET] prediction, and molecular dynamics simulations) and biological experiments (Western blotting and fluorescence staining) in vitro and in vivo . RESULTS AI-driven drug screening techniques have the potential to greatly accelerate drug development. A compound called HG9-91-01, identified using AI methods, exerted neuroprotective effects in acute glaucoma. Our research indicates that all five candidates recommended by AI were able to protect the morphological integrity of RGC cells when exposed to hypoxia and glucose deficiency, and HG9-91-01 showed a higher cell survival rate compared to the other candidates. Furthermore, HG9-91-01 was found to protect the retinal structure and reduce the loss of retinal layers in an acute glaucoma model. It was also observed that the neuroprotective effects of HG9-91-01 were highly correlated with the inhibition of PANoptosis (apoptosis, pyroptosis, and necroptosis). Finally, we found that HG9-91-01 can regulate key proteins related to PANoptosis, indicating that this compound exerts neuroprotective effects in the retina by inhibiting the expression of proteins related to apoptosis, pyroptosis, and necroptosis. CONCLUSION AI-enabled drug discovery revealed that HG9-91-01 could serve as a potential treatment for acute glaucoma.
Collapse
Affiliation(s)
- Xing Tu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong 510530, China
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong 510623, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zixing Zou
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong 510530, China
| | - Jiahui Li
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong 510530, China
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong 510623, China
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, China
| | - Simiao Zeng
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong 510530, China
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong 510623, China
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, China
| | - Zhengchao Luo
- Department of Big Data and Biomedical AI, College of Future Technology, Peking University, Beijing 100871, China
| | - Gen Li
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, China
| | - Yuanxu Gao
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong 510530, China
- Institute for Artificial Intelligence in Medicine and Faculty of Medicine, Macau University of Science and Technology, Macao Special Administrative Region 999078, China
| | - Kang Zhang
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong 510530, China
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong 510623, China
- Institute for Artificial Intelligence in Medicine and Faculty of Medicine, Macau University of Science and Technology, Macao Special Administrative Region 999078, China
| |
Collapse
|
3
|
Xie Y, Wang X, Wang P, Bi X. A pseudo-label supervised graph fusion attention network for drug–target interaction prediction. EXPERT SYSTEMS WITH APPLICATIONS 2025; 259:125264. [DOI: 10.1016/j.eswa.2024.125264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
4
|
Ouyang X, Feng Y, Cui C, Li Y, Zhang L, Wang H. Improving generalizability of drug-target binding prediction by pre-trained multi-view molecular representations. Bioinformatics 2024; 41:btaf002. [PMID: 39776159 PMCID: PMC11751634 DOI: 10.1093/bioinformatics/btaf002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 12/12/2024] [Accepted: 01/06/2025] [Indexed: 01/11/2025] Open
Abstract
MOTIVATION Most drugs start on their journey inside the body by binding the right target proteins. This is the reason that numerous efforts have been devoted to predicting the drug-target binding during drug development. However, the inherent diversity among molecular properties, coupled with limited training data availability, poses challenges to the accuracy and generalizability of these methods beyond their training domain. RESULTS In this work, we proposed a neural networks construction for high accurate and generalizable drug-target binding prediction, named Pre-trained Multi-view Molecular Representations (PMMR). The method uses pre-trained models to transfer representations of target proteins and drugs to the domain of drug-target binding prediction, mitigating the issue of poor generalizability stemming from limited data. Then, two typical representations of drug molecules, Graphs and SMILES strings, are learned respectively by a Graph Neural Network and a Transformer to achieve complementarity between local and global features. PMMR was evaluated on drug-target affinity and interaction benchmark datasets, and it derived preponderant performance contrast to peer methods, especially generalizability in cold-start scenarios. Furthermore, our state-of-the-art method was indicated to have the potential for drug discovery by a case study of cyclin-dependent kinase 2. AVAILABILITY AND IMPLEMENTATION https://github.com/NENUBioCompute/PMMR.
Collapse
Affiliation(s)
- Xike Ouyang
- School of Information Science and Technology, Institute of Computational Biology, Northeast Normal University, Changchun, Jilin 130117, China
| | - Yannuo Feng
- School of Information Science and Technology, Institute of Computational Biology, Northeast Normal University, Changchun, Jilin 130117, China
| | - Chen Cui
- School of Computer Science and Engineering, Changchun University of Technology, Changchun, Jilin 130051, China
| | - Yunhe Li
- School of Information Science and Technology, Institute of Computational Biology, Northeast Normal University, Changchun, Jilin 130117, China
| | - Li Zhang
- School of Computer Science and Engineering, Changchun University of Technology, Changchun, Jilin 130051, China
| | - Han Wang
- School of Information Science and Technology, Institute of Computational Biology, Northeast Normal University, Changchun, Jilin 130117, China
| |
Collapse
|
5
|
Wang Z, Sun L, Xu Y, Huang J, Yang F, Chang Y. Discovery of novel VEGFR2 inhibitors against non-small cell lung cancer based on fingerprint-enhanced graph attention convolutional network. J Transl Med 2024; 22:1097. [PMID: 39627783 PMCID: PMC11613592 DOI: 10.1186/s12967-024-05893-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 11/14/2024] [Indexed: 12/08/2024] Open
Abstract
Despite the proven inhibitory effects of drugs targeting vascular endothelial growth factor receptor 2 (VEGFR2) on solid tumors, including non-small cell lung cancer (NSCLC), the development of anti-NSCLC drugs solely targeting VEGFR2 still faces risks such as off-target effects and limited efficacy. This study aims to develop a novel fingerprint-enhanced graph attention convolutional network (FnGATGCN) model for predicting the activity of anti-NSCLC drugs. Employing a multimodal fusion strategy, the model integrates a feature extraction layer that comprises molecular graph feature extraction and molecular fingerprint feature extraction. The performance evaluation results indicate that the model exhibits high accuracy and stability in predicting activity. Moreover, we explored the relationship between molecular features and biological activity through visualization analysis, thus improving the interpretability of the approach. Utilizing this model, we screened the ZINC database and conducted high-precision molecular docking, leading to the identification of 11 potential active molecules. Subsequently, molecular dynamics simulations and free energy calculations were performed. The results demonstrate that all 11 aforementioned molecules can stably bind to VEGFR2 under dynamic conditions. Among the short-listed compounds, the top six exhibited satisfactory inhibitory activity against VEGFR2 and A549 cells. Especially, compound Z-3 displayed VEGFR2 inhibitory with IC50 values of 0.88 μM, and anti-proliferative activity against A549 cells with IC50 values of 4.23 ± 0.45 μM. This approach combines the advantages of target-based and phenotype-based screening, facilitating the rapid and efficient identification of candidate compounds with dual activity against VEGFR2 and A549 cell lines. It provides new insights and methods for the development of anti-NSCLC drugs. Furthermore, further biological activity tests revealed that Z1-Z3 and Z6 manifested relatively strong antiproliferative activities against NCI-H23 and NCI-H460, and relatively low toxicity towards GES-1. The hit compounds were promising candidates for the further development of novel VEGFR2 inhibitors against NSCLC.
Collapse
Affiliation(s)
- Zixiao Wang
- Department of Pharmacy, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China.
| | - Lili Sun
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yu Xu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, 210009, China
| | - Jing Huang
- Department of Pharmacy, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Fang Yang
- Department of Pharmacy, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Yu Chang
- Department of Pharmacy, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China.
| |
Collapse
|
6
|
Iwata H. Transforming drug discovery: the impact of AI and molecular simulation on R&D efficiency. Bioanalysis 2024; 16:1211-1217. [PMID: 39641486 PMCID: PMC11703525 DOI: 10.1080/17576180.2024.2437283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024] Open
Abstract
The process of developing new drugs in the pharmaceutical industry is both time-consuming and costly, making efficiency crucial. Recent advances in hardware and computational methods have led to the widespread application of computational science approaches in drug discovery. These approaches, including artificial intelligence and molecular simulations, span from target identification to pharmacokinetics research, aiming to reduce the likelihood of failure and present lower costs. Machine learning-based methods predict new applications for developing new drugs based on accumulated knowledge, while molecular simulations estimate interactions between drugs and target proteins at the atomic level based on physical laws. Each approach has its advantages and disadvantages, and they complement each other. As a result, the future of computational science approaches in drug discovery is expected to focus on developing new methodologies that integrate these two techniques to enhance the efficiency of drug discovery.
Collapse
Affiliation(s)
- Hiroaki Iwata
- Department of Biological Regulation, Faculty of Medicine, Tottori University, Yonago, Japan
| |
Collapse
|
7
|
Li C, Qin W, Hu J, Lin J, Mao Y. A Machine Learning Computational Framework Develops a Multiple Programmed Cell Death Index for Improving Clinical Outcomes in Bladder Cancer. Biochem Genet 2024; 62:4710-4737. [PMID: 38353892 DOI: 10.1007/s10528-024-10683-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/03/2024] [Indexed: 11/29/2024]
Abstract
Comprehensive action patterns of programmed cell death (PCD) in bladder cancer (BLCA) have not yet been thoroughly investigated. Here, we collected 19 different PCD patterns, including 1911 PCD-related genes, and developed a multiple programmed cell death index (MPCDI) based on a machine learning computational framework. We found that in the TCGA-BLCA training cohort and the independently validated GSE13507 cohort, the patients with high-MPCDI had a worse prognosis, whereas patients with low-MPCDI had a better prognosis. By combining clinical characteristics with the MPCDI, we constructed a nomogram. The C-index demonstrated that the nomogram was significantly more accurate compared to other variables, including MPCDI, age, gender, and clinical stage. The results of the decision curve analysis demonstrated that the nomogram had a better net clinical benefit compared to other clinical variables. Subsequently, we revealed the heterogeneity of BLCA patients, with significant differences in terms of overall immune infiltration abundance, immunotherapeutic response, and drug sensitivity in the two MPCDI groups. Encouragingly, the high-MPCDI patients showed better efficacy for commonly used chemotherapeutic drugs than the low-MPCDI patients, which suggests that MPCDI scores have a guiding role in chemotherapy for BLCA patients. In conclusion, the MPCDI developed and verified in this study is not only an emerging clinical classifier for BLCA patients, but it also serves as a reliable forecaster for both chemotherapy and immunotherapy, which can guide clinical management and clinical decision-making for BLCA patients.
Collapse
Affiliation(s)
- Chunhong Li
- Central Laboratory, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, Guangxi, China.
| | - Wangshang Qin
- Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530003, Guangxi, China
| | - Jiahua Hu
- Central Laboratory, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, Guangxi, China
| | - Jinxia Lin
- Yulin Health School Attached to Guangxi Medical University, High-Tech Industrial Park, Yulin, 537000, Guangxi, China
| | - Yiming Mao
- Department of Thoracic Surgery, Suzhou Kowloon Hospital, Shanghai Jiao Tong University School of Medicine, Suzhou, 215028, China.
| |
Collapse
|
8
|
Zeng X, Zhong KY, Meng PY, Li SJ, Lv SQ, Wen ML, Li Y. MvGraphDTA: multi-view-based graph deep model for drug-target affinity prediction by introducing the graphs and line graphs. BMC Biol 2024; 22:182. [PMID: 39183297 PMCID: PMC11346193 DOI: 10.1186/s12915-024-01981-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/13/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND Accurately identifying drug-target affinity (DTA) plays a pivotal role in drug screening, design, and repurposing in pharmaceutical industry. It not only reduces the time, labor, and economic costs associated with biological experiments but also expedites drug development process. However, achieving the desired level of computational accuracy for DTA identification methods remains a significant challenge. RESULTS We proposed a novel multi-view-based graph deep model known as MvGraphDTA for DTA prediction. MvGraphDTA employed a graph convolutional network (GCN) to extract the structural features from original graphs of drugs and targets, respectively. It went a step further by constructing line graphs with edges as vertices based on original graphs of drugs and targets. GCN was also used to extract the relationship features within their line graphs. To enhance the complementarity between the extracted features from original graphs and line graphs, MvGraphDTA fused the extracted multi-view features of drugs and targets, respectively. Finally, these fused features were concatenated and passed through a fully connected (FC) network to predict DTA. CONCLUSIONS During the experiments, we performed data augmentation on all the training sets used. Experimental results showed that MvGraphDTA outperformed the competitive state-of-the-art methods on benchmark datasets for DTA prediction. Additionally, we evaluated the universality and generalization performance of MvGraphDTA on additional datasets. Experimental outcomes revealed that MvGraphDTA exhibited good universality and generalization capability, making it a reliable tool for drug-target interaction prediction.
Collapse
Affiliation(s)
- Xin Zeng
- College of Mathematics and Computer Science, Dali University, Dali, 671003, China
| | - Kai-Yang Zhong
- College of Mathematics and Computer Science, Dali University, Dali, 671003, China
| | - Pei-Yan Meng
- College of Mathematics and Computer Science, Dali University, Dali, 671003, China
| | - Shu-Juan Li
- Yunnan Institute of Endemic Diseases Control & Prevention, Dali, 671000, China
| | - Shuang-Qing Lv
- Institute of Surveying and Information Engineering, West Yunnan University of Applied Science, Dali, 671000, China
| | - Meng-Liang Wen
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650000, China
| | - Yi Li
- College of Mathematics and Computer Science, Dali University, Dali, 671003, China.
| |
Collapse
|
9
|
Jia ZC, Yang X, Wu YK, Li M, Das D, Chen MX, Wu J. The Art of Finding the Right Drug Target: Emerging Methods and Strategies. Pharmacol Rev 2024; 76:896-914. [PMID: 38866560 PMCID: PMC11334170 DOI: 10.1124/pharmrev.123.001028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 06/14/2024] Open
Abstract
Drug targets are specific molecules in biological tissues and body fluids that interact with drugs. Drug target discovery is a key component of drug discovery and is essential for the development of new drugs in areas such as cancer therapy and precision medicine. Traditional in vitro or in vivo target discovery methods are time-consuming and labor-intensive, limiting the pace of drug discovery. With the development of modern discovery methods, the discovery and application of various emerging technologies have greatly improved the efficiency of drug discovery, shortened the cycle time, and reduced the cost. This review provides a comprehensive overview of various emerging drug target discovery strategies, including computer-assisted approaches, drug affinity response target stability, multiomics analysis, gene editing, and nonsense-mediated mRNA degradation, and discusses the effectiveness and limitations of the various approaches, as well as their application in real cases. Through the review of the aforementioned contents, a general overview of the development of novel drug targets and disease treatment strategies will be provided, and a theoretical basis will be provided for those who are engaged in pharmaceutical science research. SIGNIFICANCE STATEMENT: Target-based drug discovery has been the main approach to drug discovery in the pharmaceutical industry for the past three decades. Traditional drug target discovery methods based on in vivo or in vitro validation are time-consuming and costly, greatly limiting the development of new drugs. Therefore, the development and selection of new methods in the drug target discovery process is crucial.
Collapse
Affiliation(s)
- Zi-Chang Jia
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China (Z.-C.J., X.Y., Y.-K.W., M.-X.C., J.W.); The Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee (D.D.); and State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, Shandong, China (M.L.)
| | - Xue Yang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China (Z.-C.J., X.Y., Y.-K.W., M.-X.C., J.W.); The Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee (D.D.); and State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, Shandong, China (M.L.)
| | - Yi-Kun Wu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China (Z.-C.J., X.Y., Y.-K.W., M.-X.C., J.W.); The Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee (D.D.); and State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, Shandong, China (M.L.)
| | - Min Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China (Z.-C.J., X.Y., Y.-K.W., M.-X.C., J.W.); The Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee (D.D.); and State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, Shandong, China (M.L.)
| | - Debatosh Das
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China (Z.-C.J., X.Y., Y.-K.W., M.-X.C., J.W.); The Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee (D.D.); and State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, Shandong, China (M.L.) ;
| | - Mo-Xian Chen
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China (Z.-C.J., X.Y., Y.-K.W., M.-X.C., J.W.); The Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee (D.D.); and State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, Shandong, China (M.L.) ;
| | - Jian Wu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China (Z.-C.J., X.Y., Y.-K.W., M.-X.C., J.W.); The Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee (D.D.); and State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, Shandong, China (M.L.) ;
| |
Collapse
|
10
|
Kalemati M, Zamani Emani M, Koohi S. DCGAN-DTA: Predicting drug-target binding affinity with deep convolutional generative adversarial networks. BMC Genomics 2024; 25:411. [PMID: 38724911 PMCID: PMC11080241 DOI: 10.1186/s12864-024-10326-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND In recent years, there has been a growing interest in utilizing computational approaches to predict drug-target binding affinity, aiming to expedite the early drug discovery process. To address the limitations of experimental methods, such as cost and time, several machine learning-based techniques have been developed. However, these methods encounter certain challenges, including the limited availability of training data, reliance on human intervention for feature selection and engineering, and a lack of validation approaches for robust evaluation in real-life applications. RESULTS To mitigate these limitations, in this study, we propose a method for drug-target binding affinity prediction based on deep convolutional generative adversarial networks. Additionally, we conducted a series of validation experiments and implemented adversarial control experiments using straw models. These experiments serve to demonstrate the robustness and efficacy of our predictive models. We conducted a comprehensive evaluation of our method by comparing it to baselines and state-of-the-art methods. Two recently updated datasets, namely the BindingDB and PDBBind, were used for this purpose. Our findings indicate that our method outperforms the alternative methods in terms of three performance measures when using warm-start data splitting settings. Moreover, when considering physiochemical-based cold-start data splitting settings, our method demonstrates superior predictive performance, particularly in terms of the concordance index. CONCLUSION The results of our study affirm the practical value of our method and its superiority over alternative approaches in predicting drug-target binding affinity across multiple validation sets. This highlights the potential of our approach in accelerating drug repurposing efforts, facilitating novel drug discovery, and ultimately enhancing disease treatment. The data and source code for this study were deposited in the GitHub repository, https://github.com/mojtabaze7/DCGAN-DTA . Furthermore, the web server for our method is accessible at https://dcgan.shinyapps.io/bindingaffinity/ .
Collapse
Affiliation(s)
- Mahmood Kalemati
- Department of Computer Engineering, Sharif University of Technology, Tehran, Iran
| | - Mojtaba Zamani Emani
- Department of Computer Engineering, Sharif University of Technology, Tehran, Iran
| | - Somayyeh Koohi
- Department of Computer Engineering, Sharif University of Technology, Tehran, Iran.
| |
Collapse
|
11
|
Zeng X, Li SJ, Lv SQ, Wen ML, Li Y. A comprehensive review of the recent advances on predicting drug-target affinity based on deep learning. Front Pharmacol 2024; 15:1375522. [PMID: 38628639 PMCID: PMC11019008 DOI: 10.3389/fphar.2024.1375522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/21/2024] [Indexed: 04/19/2024] Open
Abstract
Accurate calculation of drug-target affinity (DTA) is crucial for various applications in the pharmaceutical industry, including drug screening, design, and repurposing. However, traditional machine learning methods for calculating DTA often lack accuracy, posing a significant challenge in accurately predicting DTA. Fortunately, deep learning has emerged as a promising approach in computational biology, leading to the development of various deep learning-based methods for DTA prediction. To support researchers in developing novel and highly precision methods, we have provided a comprehensive review of recent advances in predicting DTA using deep learning. We firstly conducted a statistical analysis of commonly used public datasets, providing essential information and introducing the used fields of these datasets. We further explored the common representations of sequences and structures of drugs and targets. These analyses served as the foundation for constructing DTA prediction methods based on deep learning. Next, we focused on explaining how deep learning models, such as Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), Transformer, and Graph Neural Networks (GNNs), were effectively employed in specific DTA prediction methods. We highlighted the unique advantages and applications of these models in the context of DTA prediction. Finally, we conducted a performance analysis of multiple state-of-the-art methods for predicting DTA based on deep learning. The comprehensive review aimed to help researchers understand the shortcomings and advantages of existing methods, and further develop high-precision DTA prediction tool to promote the development of drug discovery.
Collapse
Affiliation(s)
- Xin Zeng
- College of Mathematics and Computer Science, Dali University, Dali, China
| | - Shu-Juan Li
- Yunnan Institute of Endemic Diseases Control and Prevention, Dali, China
| | - Shuang-Qing Lv
- Institute of Surveying and Information Engineering West Yunnan University of Applied Science, Dali, China
| | - Meng-Liang Wen
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Yi Li
- College of Mathematics and Computer Science, Dali University, Dali, China
| |
Collapse
|
12
|
Huang Z, Xiao Q, Xiong T, Shi W, Yang Y, Li G. Predicting Drug-Protein Interactions through Branch-Chain Mining and multi-dimensional attention network. Comput Biol Med 2024; 171:108127. [PMID: 38350397 DOI: 10.1016/j.compbiomed.2024.108127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/26/2024] [Accepted: 02/06/2024] [Indexed: 02/15/2024]
Abstract
Identifying drug-protein interactions (DPIs) is crucial in drug discovery and repurposing. Computational methods for precise DPI identification can expedite development timelines and reduce expenses compared with conventional experimental methods. Lately, deep learning techniques have been employed for predicting DPIs, enhancing these processes. Nevertheless, the limitations observed in prior studies, where many extract features from complete drug and protein entities, overlooking the crucial theoretical foundation that pharmacological responses are often correlated with specific substructures, can lead to poor predictive performance. Furthermore, certain substructure-focused research confines its exploration to a solitary fragment category, such as a functional group. In this study, addressing these constraints, we present an end-to-end framework termed BCMMDA for predicting DPIs. The framework considers various substructure types, including branch chains, common substructures, and specific fragments. We designed a specific feature learning module by combining our proposed multi-dimensional attention mechanism with convolutional neural networks (CNNs). Deep CNNs assist in capturing the synergistic effects among these fragment sets, enabling the extraction of relevant features of drugs and proteins. Meanwhile, the multi-dimensional attention mechanism refines the relationship between drug and protein features by assigning attention vectors to each drug compound and amino acid. This mechanism empowers the model to further concentrate on pivotal substructures and elements, thereby improving its ability to identify essential interactions in DPI prediction. We evaluated the performance of BCMMDA on four well-known benchmark datasets. The results indicated that BCMMDA outperformed state-of-the-art baseline models, demonstrating significant improvement in performance.
Collapse
Affiliation(s)
- Zhuo Huang
- College of Information Science and Engineering, Hunan Normal University, Changsha, 410081, China
| | - Qiu Xiao
- College of Information Science and Engineering, Hunan Normal University, Changsha, 410081, China; MOE-LCSM, School of Mathematics and Statistics, Hunan Normal University, Changsha, 410081, China; College of Computer Science and Electronic Engineering, Hunan University, Changsha, 410082, China.
| | - Tuo Xiong
- College of Information Science and Engineering, Hunan Normal University, Changsha, 410081, China
| | - Wanwan Shi
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, 410082, China
| | - Yide Yang
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, 410006, China.
| | - Guanghui Li
- School of Information Engineering, East China Jiaotong University, Nanchang, 330013, China.
| |
Collapse
|
13
|
Qi H, Yu T, Yu W, Liu C. Drug-target affinity prediction with extended graph learning-convolutional networks. BMC Bioinformatics 2024; 25:75. [PMID: 38365583 PMCID: PMC10874073 DOI: 10.1186/s12859-024-05698-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 02/12/2024] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND High-performance computing plays a pivotal role in computer-aided drug design, a field that holds significant promise in pharmaceutical research. The prediction of drug-target affinity (DTA) is a crucial stage in this process, potentially accelerating drug development through rapid and extensive preliminary compound screening, while also minimizing resource utilization and costs. Recently, the incorporation of deep learning into DTA prediction and the enhancement of its accuracy have emerged as key areas of interest in the research community. Drugs and targets can be characterized through various methods, including structure-based, sequence-based, and graph-based representations. Despite the progress in structure and sequence-based techniques, they tend to provide limited feature information. Conversely, graph-based approaches have risen to prominence, attracting considerable attention for their comprehensive data representation capabilities. Recent studies have focused on constructing protein and drug molecular graphs using sequences and SMILES, subsequently deriving representations through graph neural networks. However, these graph-based approaches are limited by the use of a fixed adjacent matrix of protein and drug molecular graphs for graph convolution. This limitation restricts the learning of comprehensive feature representations from intricate compound and protein structures, consequently impeding the full potential of graph-based feature representation in DTA prediction. This, in turn, significantly impacts the models' generalization capabilities in the complex realm of drug discovery. RESULTS To tackle these challenges, we introduce GLCN-DTA, a model specifically designed for proficiency in DTA tasks. GLCN-DTA innovatively integrates a graph learning module into the existing graph architecture. This module is designed to learn a soft adjacent matrix, which effectively and efficiently refines the contextual structure of protein and drug molecular graphs. This advancement allows for learning richer structural information from protein and drug molecular graphs via graph convolution, specifically tailored for DTA tasks, compared to the conventional fixed adjacent matrix approach. A series of experiments have been conducted to validate the efficacy of the proposed GLCN-DTA method across diverse scenarios. The results demonstrate that GLCN-DTA possesses advantages in terms of robustness and high accuracy. CONCLUSIONS The proposed GLCN-DTA model enhances DTA prediction performance by introducing a novel framework that synergizes graph learning operations with graph convolution operations, thereby achieving richer representations. GLCN-DTA does not distinguish between different protein classifications, including structurally ordered and intrinsically disordered proteins, focusing instead on improving feature representation. Therefore, its applicability scope may be more effective in scenarios involving structurally ordered proteins, while potentially being limited in contexts with intrinsically disordered proteins.
Collapse
Affiliation(s)
- Haiou Qi
- Nursing Department, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Ting Yu
- Operating Room Department, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
| | - Wenwen Yu
- School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Chenxi Liu
- School of Medicine and Health Management, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
14
|
Dehghan A, Abbasi K, Razzaghi P, Banadkuki H, Gharaghani S. CCL-DTI: contributing the contrastive loss in drug-target interaction prediction. BMC Bioinformatics 2024; 25:48. [PMID: 38291364 PMCID: PMC11264960 DOI: 10.1186/s12859-024-05671-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/22/2024] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND The Drug-Target Interaction (DTI) prediction uses a drug molecule and a protein sequence as inputs to predict the binding affinity value. In recent years, deep learning-based models have gotten more attention. These methods have two modules: the feature extraction module and the task prediction module. In most deep learning-based approaches, a simple task prediction loss (i.e., categorical cross entropy for the classification task and mean squared error for the regression task) is used to learn the model. In machine learning, contrastive-based loss functions are developed to learn more discriminative feature space. In a deep learning-based model, extracting more discriminative feature space leads to performance improvement for the task prediction module. RESULTS In this paper, we have used multimodal knowledge as input and proposed an attention-based fusion technique to combine this knowledge. Also, we investigate how utilizing contrastive loss function along the task prediction loss could help the approach to learn a more powerful model. Four contrastive loss functions are considered: (1) max-margin contrastive loss function, (2) triplet loss function, (3) Multi-class N-pair Loss Objective, and (4) NT-Xent loss function. The proposed model is evaluated using four well-known datasets: Wang et al. dataset, Luo's dataset, Davis, and KIBA datasets. CONCLUSIONS Accordingly, after reviewing the state-of-the-art methods, we developed a multimodal feature extraction network by combining protein sequences and drug molecules, along with protein-protein interaction networks and drug-drug interaction networks. The results show it performs significantly better than the comparable state-of-the-art approaches.
Collapse
Affiliation(s)
- Alireza Dehghan
- Department of Bioinformatics, Kish International Campus, University of Tehran, Kish, 1417614411, Iran
| | - Karim Abbasi
- Laboratory of System Biology, Bioinformatics and Artificial Intelligence in Medicine (LBB&AI), Faculty of Mathematics and Computer Science, Kharazmi University, Tehran, 1417614411, Iran
| | - Parvin Razzaghi
- Department of Computer Science and Information Technology, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 4513766731, Iran.
| | - Hossein Banadkuki
- Laboratory of Bioinformatics and Drug Design (LBD), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, 1417614411, Iran
| | - Sajjad Gharaghani
- Laboratory of Bioinformatics and Drug Design (LBD), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, 1417614411, Iran.
| |
Collapse
|
15
|
Abdelkader GA, Kim JD. Advances in Protein-Ligand Binding Affinity Prediction via Deep Learning: A Comprehensive Study of Datasets, Data Preprocessing Techniques, and Model Architectures. Curr Drug Targets 2024; 25:1041-1065. [PMID: 39318214 PMCID: PMC11774311 DOI: 10.2174/0113894501330963240905083020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/11/2024] [Accepted: 08/19/2024] [Indexed: 09/26/2024]
Abstract
BACKGROUND Drug discovery is a complex and expensive procedure involving several timely and costly phases through which new potential pharmaceutical compounds must pass to get approved. One of these critical steps is the identification and optimization of lead compounds, which has been made more accessible by the introduction of computational methods, including deep learning (DL) techniques. Diverse DL model architectures have been put forward to learn the vast landscape of interaction between proteins and ligands and predict their affinity, helping in the identification of lead compounds. OBJECTIVE This survey fills a gap in previous research by comprehensively analyzing the most commonly used datasets and discussing their quality and limitations. It also offers a comprehensive classification of the most recent DL methods in the context of protein-ligand binding affinity prediction (BAP), providing a fresh perspective on this evolving field. METHODS We thoroughly examine commonly used datasets for BAP and their inherent characteristics. Our exploration extends to various preprocessing steps and DL techniques, including graph neural networks, convolutional neural networks, and transformers, which are found in the literature. We conducted extensive literature research to ensure that the most recent deep learning approaches for BAP were included by the time of writing this manuscript. RESULTS The systematic approach used for the present study highlighted inherent challenges to BAP via DL, such as data quality, model interpretability, and explainability, and proposed considerations for future research directions. We present valuable insights to accelerate the development of more effective and reliable DL models for BAP within the research community. CONCLUSION The present study can considerably enhance future research on predicting affinity between protein and ligand molecules, hence further improving the overall drug development process.
Collapse
Affiliation(s)
- Gelany Aly Abdelkader
- Department of Computer Science and Electronic Engineering, Sun Moon University, Asan 31460, Republic of Korea
| | - Jeong-Dong Kim
- Department of Computer Science and Electronic Engineering, Sun Moon University, Asan 31460, Republic of Korea
- Division of Computer Science and Engineering, Sun Moon University, Asan 31460, Republic of Korea
- Genome-based BioIT Convergence Institute, Sun Moon University, Asan 31460, Korea
| |
Collapse
|