Zhou Q, Zhang S, Du Q, Ke L. RIHANet: A Residual-based Inception with Hybrid-Attention Network for Seizure Detection using EEG signals.
Comput Biol Med 2024;
171:108086. [PMID:
38382383 DOI:
10.1016/j.compbiomed.2024.108086]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/05/2024] [Accepted: 01/27/2024] [Indexed: 02/23/2024]
Abstract
Increasing attention is being given to machine learning methods designed to aid clinicians in treatment selection. Therefore, this has aroused a heightened focus on the auto-detect system of epilepsy utilizing electroencephalogram(EEG) data. However, in order for the recognition model to accurately capture a wide range of features related to channel, frequency, and temporal information, it is necessary to have EEG data that is correctly represented. To tackle this challenge, we propose a Residual-based Inception with Hybrid-Attention Network(RIHANet) to achieve automatic seizure detection. Initially, by employing Empirical Mode Decomposition and Short-time Fourier Transform(EMD-STFT) for data processing, it can improve the quality of time-frequency representation of EEG. Additionally, by applying a novel Residual-based Inception to the network architecture, the detection model can learn local and global multiscale spatial-temporal features. Furthermore, the Hybrid Attention model designed is used to obtain relationships between EEG signals from multiple perspectives, including channels, sub-spaces, and global. Using four public datasets, the suggested approach outperforms the results in the most recent scholarly publications.
Collapse