Loganathan G, Palanivelan M. An explainable adaptive channel weighting-based deep convolutional neural network for classifying renal disorders in computed tomography images.
Comput Biol Med 2025;
192:110220. [PMID:
40315718 DOI:
10.1016/j.compbiomed.2025.110220]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/19/2025] [Accepted: 04/12/2025] [Indexed: 05/04/2025]
Abstract
Renal disorders are a significant public health concern and a cause of mortality related to renal failure. Manual diagnosis is subjective, labor-intensive, and depends on the expertise of nephrologists in renal anatomy. To improve workflow efficiency and enhance diagnosis accuracy, we propose an automated deep learning model, called EACWNet, which incorporates adaptive channel weighting-based deep convolutional neural network and explainable artificial intelligence. The proposed model categorizes renal computed tomography images into various classes, such as cyst, normal, tumor, and stone. The adaptive channel weighting module utilizes both global and local contextual insights to refine the final feature map channel weights through the integration of a scale-adaptive channel attention module in the higher convolutional blocks of the VGG-19 backbone model employed in the proposed method. The efficacy of the EACWNet model has been assessed using a publicly available renal CT images dataset, attaining an accuracy of 98.87% and demonstrating a 1.75% improvement over the backbone model. However, this model exhibits class-wise precision variation, achieving higher precision for cyst, normal, and tumor cases but lower precision for the stone class due to its inherent variability and heterogeneity. Furthermore, the model predictions have been subjected to additional analysis using the explainable artificial intelligence method such as local interpretable model-agnostic explanations, to visualize better and understand the model predictions.
Collapse