Spilling CA, Howe FA, Barrick TR. Optimization of quasi-diffusion magnetic resonance imaging for quantitative accuracy and time-efficient acquisition.
Magn Reson Med 2022;
88:2532-2547. [PMID:
36054778 PMCID:
PMC9804504 DOI:
10.1002/mrm.29420]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 07/17/2022] [Accepted: 07/30/2022] [Indexed: 01/05/2023]
Abstract
PURPOSE
Quasi-diffusion MRI (QDI) is a novel quantitative technique based on the continuous time random walk model of diffusion dynamics. QDI provides estimates of the diffusion coefficient, <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:semantics><mml:mrow><mml:mspace/> <mml:msub><mml:mi>D</mml:mi> <mml:mrow><mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mn>2</mml:mn></mml:mrow> </mml:msub> </mml:mrow> <mml:annotation>$$ {D}_{1,2} $$</mml:annotation></mml:semantics> </mml:math> in mm2 s-1 and a fractional exponent, <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:semantics><mml:mrow><mml:mi>α</mml:mi></mml:mrow> <mml:annotation>$$ \upalpha $$</mml:annotation></mml:semantics> </mml:math> , defining the non-Gaussianity of the diffusion signal decay. Here, the b-value selection for rapid clinical acquisition of QDI tensor imaging (QDTI) data is optimized.
METHODS
Clinically appropriate QDTI acquisitions were optimized in healthy volunteers with respect to a multi-b-value reference (MbR) dataset comprising 29 diffusion-sensitized images arrayed between <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:semantics><mml:mrow><mml:mi>b</mml:mi> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn></mml:mrow> <mml:annotation>$$ b=0 $$</mml:annotation></mml:semantics> </mml:math> and 5000 s mm-2 . The effects of varying maximum b-value ( <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:semantics> <mml:mrow><mml:msub><mml:mi>b</mml:mi> <mml:mi>max</mml:mi></mml:msub> </mml:mrow> <mml:annotation>$$ {b}_{\mathrm{max}} $$</mml:annotation></mml:semantics> </mml:math> ), number of b-value shells, and the effects of Rician noise were investigated.
RESULTS
QDTI measures showed <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:semantics> <mml:mrow><mml:msub><mml:mi>b</mml:mi> <mml:mi>max</mml:mi></mml:msub> </mml:mrow> <mml:annotation>$$ {b}_{\mathrm{max}} $$</mml:annotation></mml:semantics> </mml:math> dependence, most significantly for <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:semantics><mml:mrow><mml:mi>α</mml:mi></mml:mrow> <mml:annotation>$$ \upalpha $$</mml:annotation></mml:semantics> </mml:math> in white matter, which monotonically decreased with higher <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:semantics> <mml:mrow><mml:msub><mml:mi>b</mml:mi> <mml:mi>max</mml:mi></mml:msub> </mml:mrow> <mml:annotation>$$ {b}_{\mathrm{max}} $$</mml:annotation></mml:semantics> </mml:math> leading to improved tissue contrast. Optimized 2 b-value shell acquisitions showed small systematic differences in QDTI measures relative to MbR values, with overestimation of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:semantics><mml:mrow><mml:mspace/> <mml:mspace/> <mml:msub><mml:mi>D</mml:mi> <mml:mrow><mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mn>2</mml:mn></mml:mrow> </mml:msub> </mml:mrow> <mml:annotation>$$ \kern0.50em {D}_{1,2} $$</mml:annotation></mml:semantics> </mml:math> and underestimation of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:semantics><mml:mrow><mml:mi>α</mml:mi></mml:mrow> <mml:annotation>$$ \upalpha $$</mml:annotation></mml:semantics> </mml:math> in white matter, and overestimation of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:semantics> <mml:mrow><mml:msub><mml:mi>D</mml:mi> <mml:mrow><mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mn>2</mml:mn></mml:mrow> </mml:msub> </mml:mrow> <mml:annotation>$$ {D}_{1,2} $$</mml:annotation></mml:semantics> </mml:math> and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:semantics><mml:mrow><mml:mi>α</mml:mi></mml:mrow> <mml:annotation>$$ \upalpha $$</mml:annotation></mml:semantics> </mml:math> anisotropies in gray and white matter. Additional shells improved the accuracy, precision, and reliability of QDTI estimates with 3 and 4 shells at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:semantics> <mml:mrow><mml:msub><mml:mi>b</mml:mi> <mml:mi>max</mml:mi></mml:msub> <mml:mo>=</mml:mo> <mml:mn>5000</mml:mn></mml:mrow> <mml:annotation>$$ {b}_{\mathrm{max}}=5000 $$</mml:annotation></mml:semantics> </mml:math> s mm-2 , and 4 b-value shells at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:semantics> <mml:mrow><mml:msub><mml:mi>b</mml:mi> <mml:mi>max</mml:mi></mml:msub> <mml:mo>=</mml:mo> <mml:mn>3960</mml:mn></mml:mrow> <mml:annotation>$$ {b}_{\mathrm{max}}=3960 $$</mml:annotation></mml:semantics> </mml:math> s mm-2 , providing minimal bias in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:semantics> <mml:mrow><mml:msub><mml:mi>D</mml:mi> <mml:mrow><mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mn>2</mml:mn></mml:mrow> </mml:msub> </mml:mrow> <mml:annotation>$$ {D}_{1,2} $$</mml:annotation></mml:semantics> </mml:math> and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:semantics><mml:mrow><mml:mi>α</mml:mi></mml:mrow> <mml:annotation>$$ \upalpha $$</mml:annotation></mml:semantics> </mml:math> compared to the MbR.
CONCLUSION
A highly detailed optimization of non-Gaussian dMRI for in vivo brain imaging was performed. QDI provided robust parameterization of non-Gaussian diffusion signal decay in clinically feasible imaging times with high reliability, accuracy, and precision of QDTI measures.
Collapse