1
|
Zhang J, Hao F, Liu X, Yao S, Wu Y, Li M, Zheng W. Multi-scale multi-instance contrastive learning for whole slide image classification. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE 2024; 138:109300. [DOI: 10.1016/j.engappai.2024.109300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
2
|
Laurent-Bellue A, Sadraoui A, Claude L, Calderaro J, Posseme K, Vibert E, Cherqui D, Rosmorduc O, Lewin M, Pesquet JC, Guettier C. Deep Learning Classification and Quantification of Pejorative and Nonpejorative Architectures in Resected Hepatocellular Carcinoma from Digital Histopathologic Images. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:1684-1700. [PMID: 38879083 DOI: 10.1016/j.ajpath.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/17/2024] [Accepted: 05/16/2024] [Indexed: 06/27/2024]
Abstract
Liver resection is one of the best treatments for small hepatocellular carcinoma (HCC), but post-resection recurrence is frequent. Biotherapies have emerged as an efficient adjuvant treatment, making the identification of patients at high risk of recurrence critical. Microvascular invasion (mVI), poor differentiation, pejorative macrotrabecular architectures, and vessels encapsulating tumor clusters architectures are the most accurate histologic predictors of recurrence, but their evaluation is time-consuming and imperfect. Herein, a supervised deep learning-based approach with ResNet34 on 680 whole slide images (WSIs) from 107 liver resection specimens was used to build an algorithm for the identification and quantification of these pejorative architectures. This model achieved an accuracy of 0.864 at patch level and 0.823 at WSI level. To assess its robustness, it was validated on an external cohort of 29 HCCs from another hospital, with an accuracy of 0.787 at WSI level, affirming its generalization capabilities. Moreover, the largest connected areas of the pejorative architectures extracted from the model were positively correlated to the presence of mVI and the number of tumor emboli. These results suggest that the identification of pejorative architectures could be an efficient surrogate of mVI and have a strong predictive value for the risk of recurrence. This study is the first step in the construction of a composite predictive algorithm for early post-resection recurrence of HCC, including artificial intelligence-based features.
Collapse
Affiliation(s)
- Astrid Laurent-Bellue
- Department of Pathology, Bicêtre Hospital, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, France
| | - Aymen Sadraoui
- Centre de Vision Numérique, Paris-Saclay University, Inria, CentraleSupélec, Gif-sur-Yvette, France
| | - Laura Claude
- Department of Pathology, Charles Nicolle Hospital, Rouen, France
| | - Julien Calderaro
- Department of Pathology, Henri-Mondor Hospital, Assistance Publique-Hôpitaux de Paris, Créteil, France
| | - Katia Posseme
- Department of Pathology, Bicêtre Hospital, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, France
| | - Eric Vibert
- Centre Hépato-Biliaire, Paul-Brousse Hospital, Assistance Publique-Hôpitaux de Paris, Villejuif, France; Faculté de Médecine, Paris-Saclay University, Le Kremlin-Bicêtre, France; Unité Mixte de Recherche 1193, Paris-Saclay University, INSERM, Villejuif, France
| | - Daniel Cherqui
- Centre Hépato-Biliaire, Paul-Brousse Hospital, Assistance Publique-Hôpitaux de Paris, Villejuif, France; Faculté de Médecine, Paris-Saclay University, Le Kremlin-Bicêtre, France; Unité Mixte de Recherche 1193, Paris-Saclay University, INSERM, Villejuif, France
| | - Olivier Rosmorduc
- Centre Hépato-Biliaire, Paul-Brousse Hospital, Assistance Publique-Hôpitaux de Paris, Villejuif, France; Faculté de Médecine, Paris-Saclay University, Le Kremlin-Bicêtre, France; Unité Mixte de Recherche 1193, Paris-Saclay University, INSERM, Villejuif, France
| | - Maïté Lewin
- Centre Hépato-Biliaire, Paul-Brousse Hospital, Assistance Publique-Hôpitaux de Paris, Villejuif, France; Faculté de Médecine, Paris-Saclay University, Le Kremlin-Bicêtre, France; Unité Mixte de Recherche 1193, Paris-Saclay University, INSERM, Villejuif, France
| | - Jean-Christophe Pesquet
- Centre de Vision Numérique, Paris-Saclay University, Inria, CentraleSupélec, Gif-sur-Yvette, France
| | - Catherine Guettier
- Department of Pathology, Bicêtre Hospital, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, France.
| |
Collapse
|
3
|
Jiang H, Yin Y, Zhang J, Deng W, Li C. Deep learning for liver cancer histopathology image analysis: A comprehensive survey. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE 2024; 133:108436. [DOI: 10.1016/j.engappai.2024.108436] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
4
|
Liu X, Li Y, Xiong X, Wu Y, Xu M, Chen L, Lin B, Xu B, Liu G. Improving HER2-Positive Breast Cancer Targeted Therapy Prediction Using multiMSnet: A Multi-Scale Pathological Image-Based Approach. 2023 IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW) 2023:304-310. [DOI: 10.1109/icdmw60847.2023.00044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Xiaohua Liu
- Chongqing University,Bioengineering College,Chongqing,China
| | - Yi Li
- Chongqing University,School of Medicine,Chongqing,China
| | - Xiaomin Xiong
- Chongqing University,School of Medicine,Chongqing,China
| | - Yihan Wu
- Chongqing University,School of Medicine,Chongqing,China
| | - Mengke Xu
- Chongqing University,School of Medicine,Chongqing,China
| | - Lin Chen
- Chinese Academy of Sciences,Chongqing Institute of Green and Intelligent Technology,Chongqing,China
| | - Bo Lin
- Chongqing University Cancer Hospital Chongqing University,Chongqing,China
| | - Bo Xu
- Chongqing University Cancer Hospital,Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer,Chongqing,China
| | - Guoxiang Liu
- Chongqing University,Bioengineering College,Chongqing,China
| |
Collapse
|
5
|
Yue Y, Li N, Xing W, Zhang G, Liu X, Zhu Z, Song S, Ta D. Condition control training-based ConVMLP-ResU-Net for semantic segmentation of esophageal cancer in 18F-FDG PET/CT images. Phys Eng Sci Med 2023; 46:1643-1658. [PMID: 37910383 DOI: 10.1007/s13246-023-01327-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 08/28/2023] [Indexed: 11/03/2023]
Abstract
The precise delineation of esophageal gross tumor volume (GTV) on medical images can promote the radiotherapy effect of esophagus cancer. This work is intended to explore effective learning-based methods to tackle the challenging auto-segmentation problem of esophageal GTV. By employing the progressive hierarchical reasoning mechanism (PHRM), we devised a simple yet effective two-stage deep framework, ConVMLP-ResU-Net. Thereinto, the front-end ConVMLP integrates convolution (ConV) and multi-layer perceptrons (MLP) to capture localized and long-range spatial information, thus making ConVMLP excel in the location and coarse shape prediction of esophageal GTV. According to the PHRM, the front-end ConVMLP should have a strong generalization ability to ensure that the back-end ResU-Net has correct and valid reasoning. Therefore, a condition control training algorithm was proposed to control the training process of ConVMLP for a robust front end. Afterward, the back-end ResU-Net benefits from the yielded mask by ConVMLP to conduct a finer expansive segmentation to output the final result. Extensive experiments were carried out on a clinical cohort, which included 1138 pairs of 18F-FDG positron emission tomography/computed tomography (PET/CT) images. We report the Dice similarity coefficient, Hausdorff distance, and Mean surface distance as 0.82 ± 0.13, 4.31 ± 7.91 mm, and 1.42 ± 3.69 mm, respectively. The predicted contours visually have good agreements with the ground truths. The devised ConVMLP is apt at locating the esophageal GTV with correct initial shape prediction and hence facilitates the finer segmentation of the back-end ResU-Net. Both the qualitative and quantitative results validate the effectiveness of the proposed method.
Collapse
Affiliation(s)
- Yaoting Yue
- Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai, China
| | - Nan Li
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Wenyu Xing
- Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai, China
| | - Gaobo Zhang
- Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai, China
| | - Xin Liu
- Academy for Engineering and Technology, Fudan University, Shanghai, China
| | - Zhibin Zhu
- School of Physics and Electromechanical Engineering, Hexi University, Zhangye, Gansu, China.
| | - Shaoli Song
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China.
| | - Dean Ta
- Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai, China
- Academy for Engineering and Technology, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Li Z, Sun Y, An F, Chen H, Liao J. Self-supervised clustering analysis of colorectal cancer biomarkers based on multi-scale whole slides image and mass spectrometry imaging fused images. Talanta 2023; 263:124727. [PMID: 37247451 DOI: 10.1016/j.talanta.2023.124727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/13/2023] [Accepted: 05/22/2023] [Indexed: 05/31/2023]
Abstract
Mass spectrometry imaging (MSI) is widely used for unlabeled molecular co-localization in biological samples and is also commonly used for screening cancer biomarkers. The main issues affecting the screening of cancer biomarkers are: 1) low-resolution MSI and pathological slices cannot be accurately matched; 2) a large amount of MSI data cannot be directly analyzed without manual annotation. This paper proposes a self-supervised cluster analysis method for colorectal cancer biomarkers based on multi-scale whole slide images (WSI) and MSI fusion images without manual annotation, which can accurately determine the correlation between molecules and lesion areas. This paper uses the combination of WSI multi-scale high-resolution and MSI high-dimensional data to obtain high-resolution fusion images. This method can observe the spatial distribution of molecules in pathological slices and use this method as an evaluation index for self-supervised screening of cancer biomarkers. The experimental results show that the method proposed in this chapter can train the image fusion model with a small amount of MSI and WSI data, and the mean Pixel Accuracy (mPA) and mean Intersection over Union (mIoU) evaluation metrics of the fused images can reach 0.9587 and 0.8745. And self-supervised clustering using MSI features and fused image features can obtain good classification results, and the precision, recall, and F1-score values of the self-supervised model reach 0.9074, 0.9065, and 0.9069, respectively. This method effectively combines the advantages of WSI and MSI, which will significantly expand the application scenarios of MSI and facilitate the screening of disease markers.
Collapse
Affiliation(s)
- Zhen Li
- School of Science, China Pharmaceutical University, Nanjing, 211198, China
| | - Yusong Sun
- School of Science, China Pharmaceutical University, Nanjing, 211198, China
| | - Feng An
- Zhejiang Lab, #1818 Wenyi West Road, Yuhang District, Hangzhou, 311100, Zhengjiang province, China
| | - Hongyang Chen
- Zhejiang Lab, #1818 Wenyi West Road, Yuhang District, Hangzhou, 311100, Zhengjiang province, China
| | - Jun Liao
- School of Science, China Pharmaceutical University, Nanjing, 211198, China; Zhejiang Lab, #1818 Wenyi West Road, Yuhang District, Hangzhou, 311100, Zhengjiang province, China.
| |
Collapse
|
7
|
Allaume P, Rabilloud N, Turlin B, Bardou-Jacquet E, Loréal O, Calderaro J, Khene ZE, Acosta O, De Crevoisier R, Rioux-Leclercq N, Pecot T, Kammerer-Jacquet SF. Artificial Intelligence-Based Opportunities in Liver Pathology-A Systematic Review. Diagnostics (Basel) 2023; 13:diagnostics13101799. [PMID: 37238283 DOI: 10.3390/diagnostics13101799] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/04/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND Artificial Intelligence (AI)-based Deep Neural Networks (DNNs) can handle a wide range of applications in image analysis, ranging from automated segmentation to diagnostic and prediction. As such, they have revolutionized healthcare, including in the liver pathology field. OBJECTIVE The present study aims to provide a systematic review of applications and performances provided by DNN algorithms in liver pathology throughout the Pubmed and Embase databases up to December 2022, for tumoral, metabolic and inflammatory fields. RESULTS 42 articles were selected and fully reviewed. Each article was evaluated through the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool, highlighting their risks of bias. CONCLUSIONS DNN-based models are well represented in the field of liver pathology, and their applications are diverse. Most studies, however, presented at least one domain with a high risk of bias according to the QUADAS-2 tool. Hence, DNN models in liver pathology present future opportunities and persistent limitations. To our knowledge, this review is the first one solely focused on DNN-based applications in liver pathology, and to evaluate their bias through the lens of the QUADAS2 tool.
Collapse
Affiliation(s)
- Pierre Allaume
- Department of Pathology CHU de Rennes, Rennes 1 University, Pontchaillou Hospital, 2 rue Henri Le Guilloux, CEDEX 09, 35033 Rennes, France
| | - Noémie Rabilloud
- Impact TEAM, Laboratoire Traitement du Signal et de l'Image (LTSI) INSERM, Rennes 1 University, Pontchaillou Hospital, 35033 Rennes, France
| | - Bruno Turlin
- Department of Pathology CHU de Rennes, Rennes 1 University, Pontchaillou Hospital, 2 rue Henri Le Guilloux, CEDEX 09, 35033 Rennes, France
- Research Unit n°UMR1341 NuMeCan-Nutrition, Métabolismes et Cancer, Rennes 1 University, Pontchaillou Hospital, 2 rue Henri Le Guilloux, CEDEX 09, 35033 Rennes, France
| | - Edouard Bardou-Jacquet
- Research Unit n°UMR1341 NuMeCan-Nutrition, Métabolismes et Cancer, Rennes 1 University, Pontchaillou Hospital, 2 rue Henri Le Guilloux, CEDEX 09, 35033 Rennes, France
- Department of Liver Diseases CHU de Rennes, Rennes 1 University, Pontchaillou Hospital, 35033 Rennes, France
| | - Olivier Loréal
- Research Unit n°UMR1341 NuMeCan-Nutrition, Métabolismes et Cancer, Rennes 1 University, Pontchaillou Hospital, 2 rue Henri Le Guilloux, CEDEX 09, 35033 Rennes, France
| | - Julien Calderaro
- Assistance Publique-Hôpitaux de Paris, Department of Pathology Henri Mondor, 94000 Créteil, France
- INSERM U955, Team Pathophysiology and Therapy of Chronic Viral Hepatitis and Related Cancers, 94000 Créteil, France
| | - Zine-Eddine Khene
- Impact TEAM, Laboratoire Traitement du Signal et de l'Image (LTSI) INSERM, Rennes 1 University, Pontchaillou Hospital, 35033 Rennes, France
- Department of Urology, CHU de Rennes, Rennes 1 University, Pontchaillou Hospital, 2 rue Henri Le Guilloux, CEDEX 09, 35033 Rennes, France
| | - Oscar Acosta
- Impact TEAM, Laboratoire Traitement du Signal et de l'Image (LTSI) INSERM, Rennes 1 University, Pontchaillou Hospital, 35033 Rennes, France
| | - Renaud De Crevoisier
- Impact TEAM, Laboratoire Traitement du Signal et de l'Image (LTSI) INSERM, Rennes 1 University, Pontchaillou Hospital, 35033 Rennes, France
- Department of Radiotherapy, Centre Eugène Marquis, 35033 Rennes, France
| | - Nathalie Rioux-Leclercq
- Department of Pathology CHU de Rennes, Rennes 1 University, Pontchaillou Hospital, 2 rue Henri Le Guilloux, CEDEX 09, 35033 Rennes, France
| | - Thierry Pecot
- Biosit Platform UAR 3480 CNRS US18 INSERM U955, Rennes 1 University, Pontchaillou Hospital, 35033 Rennes, France
| | - Solène-Florence Kammerer-Jacquet
- Department of Pathology CHU de Rennes, Rennes 1 University, Pontchaillou Hospital, 2 rue Henri Le Guilloux, CEDEX 09, 35033 Rennes, France
- Impact TEAM, Laboratoire Traitement du Signal et de l'Image (LTSI) INSERM, Rennes 1 University, Pontchaillou Hospital, 35033 Rennes, France
| |
Collapse
|
8
|
Basu A, Senapati P, Deb M, Rai R, Dhal KG. A survey on recent trends in deep learning for nucleus segmentation from histopathology images. EVOLVING SYSTEMS 2023; 15:1-46. [PMID: 38625364 PMCID: PMC9987406 DOI: 10.1007/s12530-023-09491-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 02/13/2023] [Indexed: 03/08/2023]
Abstract
Nucleus segmentation is an imperative step in the qualitative study of imaging datasets, considered as an intricate task in histopathology image analysis. Segmenting a nucleus is an important part of diagnosing, staging, and grading cancer, but overlapping regions make it hard to separate and tell apart independent nuclei. Deep Learning is swiftly paving its way in the arena of nucleus segmentation, attracting quite a few researchers with its numerous published research articles indicating its efficacy in the field. This paper presents a systematic survey on nucleus segmentation using deep learning in the last five years (2017-2021), highlighting various segmentation models (U-Net, SCPP-Net, Sharp U-Net, and LiverNet) and exploring their similarities, strengths, datasets utilized, and unfolding research areas.
Collapse
Affiliation(s)
- Anusua Basu
- Department of Computer Science and Application, Midnapore College (Autonomous), Paschim Medinipur, Midnapore, West Bengal India
| | - Pradip Senapati
- Department of Computer Science and Application, Midnapore College (Autonomous), Paschim Medinipur, Midnapore, West Bengal India
| | - Mainak Deb
- Wipro Technologies, Pune, Maharashtra India
| | - Rebika Rai
- Department of Computer Applications, Sikkim University, Sikkim, India
| | - Krishna Gopal Dhal
- Department of Computer Science and Application, Midnapore College (Autonomous), Paschim Medinipur, Midnapore, West Bengal India
| |
Collapse
|
9
|
Liang M, Chen Q, Li B, Wang L, Wang Y, Zhang Y, Wang R, Jiang X, Zhang C. Interpretable classification of pathology whole-slide images using attention based context-aware graph convolutional neural network. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 229:107268. [PMID: 36495811 DOI: 10.1016/j.cmpb.2022.107268] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND AND OBJECTIVE Whole slide image (WSI) classification and lesion localization within giga-pixel slide are challenging tasks in computational pathology that requires context-aware representations of histological features to adequately infer nidus. The existing weakly supervised learning methods mainly treat different locations in the slide as independent regions and cannot learn potential nonlinear interactions between instances based on i.i.d assumption, resulting in the model unable to effectively utilize context-ware information to predict the labels of WSIs and locate the region of interest (ROI). METHODS Here, we propose an interpretable classification model named bidirectional Attention-based Multiple Instance Learning Graph Convolutional Network (ABMIL-GCN), which hierarchically aggregates context-aware features of instances into a global representation in a topology fashion to predict the slide labels and localize the region of lymph node metastasis in WSIs. RESULTS We verified the superiority of this method on the Camelyon16 dataset, and the results show that the average predicted ACC and AUC of the proposed model after flooding optimization can reach 90.89% and 0.9149, respectively. The average accuracy and ACC score are improved by more than 7% and 4% compared with the existing state-of-the-art algorithms. CONCLUSIONS The results demonstrate that context-aware GCN outperforms existing weakly supervised learning methods by introducing spatial correlations between the neighbor image patches, which also addresses the 'accuracy-interpretability trade-off' problem. The framework provides a novel paradigm for the clinical application of computer-aided diagnosis and intelligent systems.
Collapse
Affiliation(s)
- Meiyan Liang
- School of Physics and Electronic Engineering, Shanxi University, Taiyuan 030006, China.
| | - Qinghui Chen
- School of Physics and Electronic Engineering, Shanxi University, Taiyuan 030006, China
| | - Bo Li
- Department of Rehabilitation Treatment, Shanxi Rongjun Hospital, Taiyuan 030000, China
| | - Lin Wang
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ying Wang
- School of Physics and Electronic Engineering, Shanxi University, Taiyuan 030006, China
| | - Yu Zhang
- School of Physics and Electronic Engineering, Shanxi University, Taiyuan 030006, China
| | - Ru Wang
- School of Physics and Electronic Engineering, Shanxi University, Taiyuan 030006, China
| | - Xing Jiang
- School of Physics and Electronic Engineering, Shanxi University, Taiyuan 030006, China
| | - Cunlin Zhang
- Beijing Key Laboratory for Terahertz Spectroscopy and Imaging, Key Laboratory of Terahertz, Optoelectronics, Ministry of Education, Capital Normal University, Beijing 100048, China
| |
Collapse
|
10
|
Yue Y, Li N, Zhang G, Zhu Z, Liu X, Song S, Ta D. Automatic segmentation of esophageal gross tumor volume in 18F-FDG PET/CT images via GloD-LoATUNet. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 229:107266. [PMID: 36470035 DOI: 10.1016/j.cmpb.2022.107266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 10/08/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND AND OBJECTIVE For esophageal squamous cell carcinoma, radiotherapy is one of the primary treatments. During the planning before radiotherapy, the intractable task is to precisely delineate the esophageal gross tumor volume (GTV) on medical images. In current clinical practice, the manual delineation suffers from high intra- and inter-rater variability, while also exhausting the oncologists on a treadmill. There is an urgent demand for effective computer-aided automatic segmentation methods. To this end, we designed a novel deep network, dubbed as GloD-LoATUNet. METHODS GloD-LoATUNet follows the effective U-shape structure. On the contractile path, the global deformable dense attention transformer (GloDAT), local attention transformer (LoAT), and convolution blocks are integrated to model long-range dependencies and localized information. On the center bridge and the expanding path, convolution blocks are adopted to upsample the extracted representations for pixel-wise semantic prediction. Between the peer-to-peer counterparts, enhanced skip connections are built to compensate for the lost spatial information and dependencies. By exploiting complementary strengths of the GloDAT, LoAT, and convolution, GloD-LoATUNet has remarkable representation learning capabilities, performing well in the prediction of the small and variable esophageal GTV. RESULTS The proposed approach was validated in the clinical positron emission tomography/computed tomography (PET/CT) cohort. For 4 different data partitions, we report the Dice similarity coefficient (DSC), Hausdorff distance (HD), and Mean surface distance (MSD) as: 0.83±0.13, 4.88±9.16 mm, and 1.40±4.11 mm; 0.84±0.12, 6.89±12.04 mm, and 1.18±3.02 mm; 0.84±0.13, 3.89±7.64 mm, and 1.28±3.68 mm; 0.86±0.09, 3.71±4.79 mm, and 0.90±0.37 mm; respectively. The predicted contours present a desirable consistency with the ground truth. CONCLUSIONS The inspiring results confirm the accuracy and generalizability of the proposed model, demonstrating the potential for automatic segmentation of esophageal GTV in clinical practice.
Collapse
Affiliation(s)
- Yaoting Yue
- Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai 200438, China; Human Phenome Institute, Fudan University, Shanghai 201203, China
| | - Nan Li
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai 201321, China
| | - Gaobo Zhang
- Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai 200438, China
| | - Zhibin Zhu
- School of Physics and Electromechanical Engineering, Hexi University, Zhangye 734000, Gansu, China.
| | - Xin Liu
- Academy for Engineering and Technology, Fudan University, Shanghai 200433, China
| | - Shaoli Song
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai 201321, China.
| | - Dean Ta
- Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai 200438, China; Academy for Engineering and Technology, Fudan University, Shanghai 200433, China.
| |
Collapse
|
11
|
A comprehensive review of computer-aided whole-slide image analysis: from datasets to feature extraction, segmentation, classification and detection approaches. Artif Intell Rev 2022. [DOI: 10.1007/s10462-021-10121-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|