Du X, Liu Y. Constraint-based Unsupervised Domain Adaptation network for Multi-Modality Cardiac Image Segmentation.
IEEE J Biomed Health Inform 2021;
26:67-78. [PMID:
34757915 DOI:
10.1109/jbhi.2021.3126874]
[Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The cardiac CT and MRI images depict the various structures of the heart, which are very valuable for analyzing heart function. However, due to the difference in the shape of the cardiac images and imaging techniques, automatic segmentation is challenging. To solve this challenge, in this paper, we propose a new constraint-based unsupervised domain adaptation network. This network first performs mutual translation of images between different domains, it can provide training data for the segmentation model, and ensure domain invariance at the image level. Then, we input the target domain into the source domain segmentation model to obtain pseudo-labels and introduce cross-domain self-supervised learning between the two segmentation models. Here, a new loss function is designed to ensure the accuracy of the pseudo-labels. In addition, a cross-domain consistency loss is also introduced. Finally, we construct a multi-level aggregation segmentation network to obtain more refined target domain information. We validate our method on the public whole heart image segmentation challenge dataset and obtain experimental results of 82.9% and 5.5 on dice and average symmetric surface distance (ASSD), respectively. These experimental results prove that our method can provide important assistance in the clinical evaluation of unannotated cardiac datasets.
Collapse