1
|
Kuroki N, Uchino Y, Funakura T, Mori H. Electronic fluctuation difference between trimethylamine N-oxide and tert-butyl alcohol in water. Sci Rep 2022; 12:19417. [PMID: 36371592 PMCID: PMC9653398 DOI: 10.1038/s41598-022-24049-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022] Open
Abstract
Although small organic molecules in cells have been considered important to control the functions of proteins, their electronic fluctuation and the intermolecular interaction, which is physicochemical origin of the molecular functions, under physiological conditions, i.e., dilute aqueous solutions (0.18 mol L-1), has never been clarified due to the lack of observation methods with both accuracy and efficiency. Herein, the time evolutions of the interactions in dilute aqueous trimethylamine N-oxide (TMAO) and tert-butyl alcohol (TBA) solutions were analyzed via ab initio molecular dynamics simulations accelerated with the fragment molecular theory. It has been known that TMAO and TBA have similar structures, but opposite physiological functions to stabilize and destabilize proteins. It was clarified that TMAO induced stable polarization and charge-transfer interactions with water molecules near the hydrophilic group, and water molecules were caught even near the CH3- group. Those should affect protein stabilization. Understanding the solution dynamics will contribute to artificial chaperone design in next generation medicine.
Collapse
Affiliation(s)
- Nahoko Kuroki
- grid.443595.a0000 0001 2323 0843Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, Bunkyo-ku, Tokyo, 112-8551 Japan ,grid.419082.60000 0004 1754 9200JST, ACT-X, Kawaguchi, Saitama 332-0012 Japan
| | - Yukina Uchino
- grid.412314.10000 0001 2192 178XDepartment of Chemistry and Biochemistry, Graduate School of Humanities and Sciences, Ochanomizu University, Bunkyo-ku, Tokyo, 112-8610 Japan
| | - Tamon Funakura
- grid.443595.a0000 0001 2323 0843Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, Bunkyo-ku, Tokyo, 112-8551 Japan
| | - Hirotoshi Mori
- grid.443595.a0000 0001 2323 0843Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, Bunkyo-ku, Tokyo, 112-8551 Japan ,grid.467196.b0000 0001 2285 6123Department of Theoretical and Computational Molecular Science, Institute for Molecular Science, Myodaiji, Okazaki, 444-8585 Japan
| |
Collapse
|
2
|
Structural Characterization of Cis– and Trans–Pt(NH3)2Cl2 Conjugations with Chitosan Nanoparticles. Molecules 2022; 27:molecules27196264. [PMID: 36234801 PMCID: PMC9572281 DOI: 10.3390/molecules27196264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/18/2022] [Accepted: 09/21/2022] [Indexed: 12/02/2022] Open
Abstract
The conjugation of chitosan 15 and 100 KD with anticancer drugs cis– and trans–Pt (NH3)2Cl2 (abbreviated cis–Pt and trans–Pt) were studied at pH 5–6. Using multiple spectroscopic methods and thermodynamic analysis to characterize the nature of drug–chitosan interactions and the potential application of chitosan nanoparticles in drug delivery. Analysis showed that both hydrophobic and hydrophilic contacts are involved in drug–polymer interactions, while chitosan size and charge play a major role in the stability of drug–polymer complexes. The overall binding constants are Kch–15–cis–Pt = 1.44 (±0.6) × 105 M−1, Kch–100–cis–Pt = 1.89 (±0.9) × 105 M−1 and Kch–15–trans–Pt = 9.84 (±0.5) × 104 M−1, and Kch–100–trans–Pt = 1.15 (±0.6) × 105 M−1. More stable complexes were formed with cis–Pt than with trans–Pt–chitosan adducts, while stronger binding was observed for chitosan 100 in comparison to chitosan 15 KD. This study indicates that polymer chitosan 100 is a stronger drug carrier than chitosan 15 KD in vitro.
Collapse
|
3
|
Ninomiya M, Doi H, Matsumoto Y, Mochizuki Y, Komeiji Y. Ab Initio Fragment Molecular Orbital-Based Molecular Dynamics (FMO-MD) Simulations of (NH 3) 32 Cluster: Effects of Electron Correlation. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20190320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Moeko Ninomiya
- Department of Chemistry and Research Center for Smart Molecules, Faculty of Science, Rikkyo University, 3-34-1 Nishi-ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Hideo Doi
- Department of Chemistry and Research Center for Smart Molecules, Faculty of Science, Rikkyo University, 3-34-1 Nishi-ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
- Research Center for Computational Design of Advanced Functional Materials (CD-FMat), National Institute of Advanced Industrial Science and Technology, AIST, Tsukuba Central 2, Tsukuba, Ibaraki 305-8568, Japan
| | - Yoshiteru Matsumoto
- Department of Chemistry, Faculty of Science, Shizuoka University, 836 Ohya, Suruga, Shizuoka 422-8529, Japan
| | - Yuji Mochizuki
- Department of Chemistry and Research Center for Smart Molecules, Faculty of Science, Rikkyo University, 3-34-1 Nishi-ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Yuto Komeiji
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, AIST, Tsukuba Central 6, Tsukuba, Ibaraki 305-8566, Japan
| |
Collapse
|
4
|
Chanphai P, Bariyanga J, Bérubé G, Tajmir-Riahi HA. Complexation of cis-Pt and trans-Pt(NH 3) 2Cl 2 with serum proteins: A potential application for drug delivery. J Biomol Struct Dyn 2019; 38:2777-2783. [PMID: 31402755 DOI: 10.1080/07391102.2019.1654408] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
AbbreviationsHAShuman serum albuminBSAbovine serum albuminβ-LGbeta-lactoglobulincis-Pt and trans-PtPt(NH3)2Cl2FTIRFourier transform infraredCommunicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- P Chanphai
- Department of Chemistry, Biochemistry and Physics
| | - J Bariyanga
- Division of Humanities: Math/Sciences, University of Hawai'i e West O'ahu, Kapolei, HI, USA
| | - G Bérubé
- Department of Chemistry, Biochemistry and Physics.,Groupe de Recherche en Signalisation Cellulaire, University of Québec at Trois-Rivières, Trois-Rivières, Québec, Canada
| | | |
Collapse
|
5
|
Kuroki N, Mori H. Applicability of Effective Fragment Potential Version 2-Molecular Dynamics (EFP2-MD) Simulations for Predicting Dynamic Liquid Properties Including the Supercritical Fluid Phase. J Phys Chem B 2019; 123:194-200. [PMID: 30525629 DOI: 10.1021/acs.jpcb.8b07446] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Effective fragment potential version 2-molecular dynamics (EFP2-MD) simulations, where the EFP2 is a polarizable force field based on ab initio electronic structure calculations, were applied to predict the static and dynamic liquid properties of compressed liquid NH3. By analyzing the temperature dependence of the radial distribution function, the autocorrelation functions of velocity ( Cv( t)) and reorientation ( Cr( t)), and the self-diffusion constant, we clarified that the ab initio EFP2 force field can effectively describe the properties of compressed liquids. These descriptions can be performed with at least semiquantitative accuracy and at a sufficiently low computational cost. In the EFP2-MD protocol, no force field training is required. This training is mandatory when simulating liquid properties with classical MD techniques (especially in extreme conditions with high pressures and temperatures). EFP2-MD is a promising technique for predicting the physicochemical properties of novel functional compressed liquids, including supercritical fluid phase properties.
Collapse
|
6
|
Okiyama Y, Nakano T, Watanabe C, Fukuzawa K, Mochizuki Y, Tanaka S. Fragment Molecular Orbital Calculations with Implicit Solvent Based on the Poisson–Boltzmann Equation: Implementation and DNA Study. J Phys Chem B 2018; 122:4457-4471. [DOI: 10.1021/acs.jpcb.8b01172] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Yoshio Okiyama
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Tatsuya Nakano
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
- Division of Medicinal Safety Science, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-9501, Japan
| | - Chiduru Watanabe
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Kaori Fukuzawa
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
- Faculty of Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Yuji Mochizuki
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
- Department of Chemistry and Research Center for Smart Molecules, Faculty of Science, Rikkyo University, 3-34-1 Nishi-ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Shigenori Tanaka
- Graduate School of System Informatics, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, Hyogo 657-8501, Japan
| |
Collapse
|
7
|
Kuroki N, Mori H. Applicability of effective fragment potential version 2 – Molecular dynamics (EFP2-MD) simulations for predicting excess properties of mixed solvents. Chem Phys Lett 2018. [DOI: 10.1016/j.cplett.2018.01.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
8
|
Yamada H, Mochizuki Y, Fukuzawa K, Okiyama Y, Komeiji Y. Fragment molecular orbital (FMO) calculations on DNA by a scaled third-order Møller-Plesset perturbation (MP2.5) scheme. COMPUT THEOR CHEM 2017. [DOI: 10.1016/j.comptc.2016.12.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
9
|
Kroutil O, Předota M, Chval Z. Pt···H Nonclassical Interaction in Water-Dissolved Pt(II) Complexes: Coaction of Electronic Effects with Solvent-Assisted Stabilization. Inorg Chem 2016; 55:3252-64. [DOI: 10.1021/acs.inorgchem.5b02261] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Ondřej Kroutil
- Institute of Laboratory Diagnostics and Public Health,
Faculty of Health and Social Studies, University of South Bohemia, J.
Boreckého 27, 37011 České Budějovice, Czech Republic
- Institute of Physics and Biophysics, Faculty of Science, University of South Bohemia, Branišovská 1760, 37005 České Budějovice, Czech Republic
| | - Milan Předota
- Institute of Physics and Biophysics, Faculty of Science, University of South Bohemia, Branišovská 1760, 37005 České Budějovice, Czech Republic
| | - Zdeněk Chval
- Institute of Laboratory Diagnostics and Public Health,
Faculty of Health and Social Studies, University of South Bohemia, J.
Boreckého 27, 37011 České Budějovice, Czech Republic
| |
Collapse
|
10
|
Pruitt SR, Nakata H, Nagata T, Mayes M, Alexeev Y, Fletcher G, Fedorov DG, Kitaura K, Gordon MS. Importance of Three-Body Interactions in Molecular Dynamics Simulations of Water Demonstrated with the Fragment Molecular Orbital Method. J Chem Theory Comput 2016; 12:1423-35. [DOI: 10.1021/acs.jctc.5b01208] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Spencer R. Pruitt
- Argonne
Leadership Computing Facility, Argonne National Laboratory, 9700 S. Cass
Avenue, Lemont, Illinois 60439, United States
| | - Hiroya Nakata
- Department of Fundamental Technology Research, R&D Center Kagoshima, Kyocera Corporation, 1-4 Kokubu Yamashita-cho, Kirishima-shi, Kagoshima 899-4312, Japan
| | - Takeshi Nagata
- Nanosystem Research
Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1 Umenzono, Tsukuba, Ibaraki 305-8568, Japan
| | - Maricris Mayes
- Department
of Chemistry and Biochemistry, University of Massachusetts Dartmouth, 285 Old Westport Road, Dartmouth, Massachusetts 02747-2300, United States
| | - Yuri Alexeev
- Argonne
Leadership Computing Facility, Argonne National Laboratory, 9700 S. Cass
Avenue, Lemont, Illinois 60439, United States
| | - Graham Fletcher
- Argonne
Leadership Computing Facility, Argonne National Laboratory, 9700 S. Cass
Avenue, Lemont, Illinois 60439, United States
| | - Dmitri G. Fedorov
- Nanosystem Research
Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1 Umenzono, Tsukuba, Ibaraki 305-8568, Japan
| | - Kazuo Kitaura
- Graduate
School of System Informatics, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Mark S. Gordon
- Department
of Chemistry and Ames Laboratory, Iowa State University, 201 Spedding
Hall, Ames, Iowa 50011, United States
| |
Collapse
|
11
|
Tanaka S, Mochizuki Y, Komeiji Y, Okiyama Y, Fukuzawa K. Electron-correlated fragment-molecular-orbital calculations for biomolecular and nano systems. Phys Chem Chem Phys 2015; 16:10310-44. [PMID: 24740821 DOI: 10.1039/c4cp00316k] [Citation(s) in RCA: 194] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent developments in the fragment molecular orbital (FMO) method for theoretical formulation, implementation, and application to nano and biomolecular systems are reviewed. The FMO method has enabled ab initio quantum-mechanical calculations for large molecular systems such as protein-ligand complexes at a reasonable computational cost in a parallelized way. There have been a wealth of application outcomes from the FMO method in the fields of biochemistry, medicinal chemistry and nanotechnology, in which the electron correlation effects play vital roles. With the aid of the advances in high-performance computing, the FMO method promises larger, faster, and more accurate simulations of biomolecular and related systems, including the descriptions of dynamical behaviors in solvent environments. The current status and future prospects of the FMO scheme are addressed in these contexts.
Collapse
Affiliation(s)
- Shigenori Tanaka
- Graduate School of System Informatics, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan.
| | | | | | | | | |
Collapse
|
12
|
Theoretical Study on the Hydration Structure of Divalent Radium Ion Using Fragment Molecular Orbital–Molecular Dynamics (FMO–MD) Simulation. J SOLUTION CHEM 2014. [DOI: 10.1007/s10953-014-0235-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Yue H, Yang B, Wang Y, Chen G. Investigations of the binding of [Pt2(DTBPA)Cl2](II) and [Pt2(TPXA)Cl2](II) to DNA via various cross-linking modes. Int J Mol Sci 2013; 14:19556-86. [PMID: 24077126 PMCID: PMC3821573 DOI: 10.3390/ijms141019556] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 08/14/2013] [Accepted: 09/10/2013] [Indexed: 12/14/2022] Open
Abstract
We have constructed models for a series of platinum-DNA adducts that represent the binding of two agents, [Pt2(DTBPA)Cl2](II) and [Pt2(TPXA)Cl2](II), to DNA via inter- and intra-strand cross-linking, and carried out molecular dynamics simulations and DNA conformational dynamics calculations. The effects of trans- and cis-configurations of the centers of these di-nuclear platinum agents, and of different bridging linkers, have been investigated on the conformational distortions of platinum-DNA adducts formed via inter- and intra-strand cross-links. The results demonstrate that the DNA conformational distortions for the various platinum-DNA adducts with differing cross-linking modes are greatly influenced by the difference between the platinum-platinum distance for the platinum agent and the platinum-bound N7–N7 distance for the DNA molecule, and by the flexibility of the bridging linkers in the platinum agent. However, the effects of trans/cis-configurations of the platinum-centers on the DNA conformational distortions in the platinum-DNA adducts depend on the inter- and intra-strand cross-linking modes. In addition, we discuss the relevance of DNA base motions, including opening, shift and roll, to the changes in the parameters of the DNA major and minor grooves caused by binding of the platinum agent.
Collapse
Affiliation(s)
| | | | - Yan Wang
- Authors to whom correspondence should be addressed; E-Mails: (Y.W.); (G.C.); Tel.: +86-10-5880-5247 (Y.W.); +86-10-5880-5424 (G.C.); Fax: +86-10-5880-2075 (Y.W. & G.C.)
| | - Guangju Chen
- Authors to whom correspondence should be addressed; E-Mails: (Y.W.); (G.C.); Tel.: +86-10-5880-5247 (Y.W.); +86-10-5880-5424 (G.C.); Fax: +86-10-5880-2075 (Y.W. & G.C.)
| |
Collapse
|
14
|
Melchior A, Martínez JM, Pappalardo RR, Sánchez Marcos E. Hydration of Cisplatin Studied by an Effective Ab Initio Pair Potential Including Solute–Solvent Polarization. J Chem Theory Comput 2013; 9:4562-73. [DOI: 10.1021/ct400433c] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Andrea Melchior
- University of Udine, Department of Environmental and
Physical Chemistry, 33100 Udine, Italy
- University of Seville, Department of Physical Chemistry, 41012 Seville, Spain
| | | | | | | |
Collapse
|
15
|
Sgarbossa P, Sbovata SM, Bertani R, Mozzon M, Benetollo F, Marzano C, Gandin V, Michelin RA. Novel imino thioether complexes of platinum(II): synthesis, structural investigation, and biological activity. Inorg Chem 2013; 52:5729-41. [PMID: 23647564 DOI: 10.1021/ic3024452] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The reactions of the nitrile complexes cis- and trans-[PtCl2(NCR)2] (R = Me, Et, CH2Ph, Ph) with an excess of ethanethiol, EtSH, in the presence of a catalytic amount of n-BuLi in tetrahydrofuran (THF), afforded in good yield the bis-imino thioether derivatives cis-[PtCl2{E-N(H)═C(SEt)R}2] (R = Me (1), Et (2), CH2Ph (3), Ph (4)) and trans-[PtCl2{E-N(H)═C(SEt)R}2] (R = Me (5), Et (6), CH2Ph (7), Ph (8)). The imino thioether ligands assumed the E configuration corresponding to a cis addition of the thiol to the nitrile triple bond. The spectroscopic properties of these complexes have been reported along with the molecular structures of 1, 2, and 7 as established by X-ray crystallography which indicated that these compounds exhibit square-planar coordination geometry around the platinum center. Four N-H···Cl intermolecular contacts (N-H···Cl ca. 2.5-2.7 Å) between each chlorine atom and the N-H proton of the imino thioether ligand gave rise to "dimers" Pt2Cl4L4 (L = imino thioether) formed by two PtCl2L2 units. The cytotoxic properties of these new platinum(II) complexes were evaluated against various human cancer cell lines. Among all derivatives, trans-[PtCl2{E-N(H)═C(SEt)CH2Ph}2] showed the greatest in vitro cytotoxic activity being able to decrease cancer cell viability roughly 3-fold more effectively than cisplatin.
Collapse
Affiliation(s)
- Paolo Sgarbossa
- Department of Industrial Engineering, University of Padua, Via F. Marzolo, 9, 35131 Padua, Italy
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Mori H, Kojima R, Mochizuki Y, Uenohara W, Umezawa I, Matsushita N. Importance of spin–orbit coupling effect and solvent effect in electronic transition assignments of PtII complexes: In the case of cis/trans-[PtIICl2(NH3)2]. J Mol Struct 2013. [DOI: 10.1016/j.molstruc.2012.11.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
17
|
Sato H. A modern solvation theory: quantum chemistry and statistical chemistry. Phys Chem Chem Phys 2013; 15:7450-65. [DOI: 10.1039/c3cp50247c] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Nagata T, Fedorov DG, Kitaura K. Analytic gradient for the embedding potential with approximations in the fragment molecular orbital method. Chem Phys Lett 2012. [DOI: 10.1016/j.cplett.2012.07.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|