1
|
Cheng Y, Rong X, Xia M, Zhang Z, Wang JR, Mei X. Conformational polymorphs of isotretinoin and their impact on physicochemical and biological properties. Int J Pharm 2021; 610:121222. [PMID: 34699948 DOI: 10.1016/j.ijpharm.2021.121222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/17/2021] [Accepted: 10/19/2021] [Indexed: 10/20/2022]
Abstract
Isotretinoin is the first-line drug for treatment of severe acne. Only one polymorph was reported even though it has been launched for nearly 40 years, and its clinic application was however limited by its stability and solubility challenges. In our study, two new polymorphs of isotretinoin were discovered and fully characterized. The transformation relationships between these solid forms were fully discussed, and a visible color change during single-crystal-to-single-crystal phase transition with the conformational change was investigated. Form II is determined to be thermodynamic stable form at room temperature, but metastable form at body temperature. The results show that form II is an ideal solid state possessing both superior thermal stability (60℃, open air) and higher absorption once delivered into body. The thermal stability can be associated with the crystal structure such as torsion angle. The relative bioavailability of form II is higher than form I as expected, and the bioavailability of form II formulation is about 2 times as that of the marketed form I capsule. Therefore, form II formulation could provide an alternative for better performing isotretinoin.
Collapse
Affiliation(s)
- Yinxiang Cheng
- Pharmaceutical Analytical & Solid-State Chemistry Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Xiaoyi Rong
- Pharmaceutical Analytical & Solid-State Chemistry Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Mengyuan Xia
- Pharmaceutical Analytical & Solid-State Chemistry Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Zaiyong Zhang
- Pharmaceutical Analytical & Solid-State Chemistry Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jian-Rong Wang
- Pharmaceutical Analytical & Solid-State Chemistry Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Xuefeng Mei
- Pharmaceutical Analytical & Solid-State Chemistry Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China.
| |
Collapse
|
2
|
Abstract
Vitamin A and derivatives, the natural retinoids, underpin signaling pathways of cellular differentiation, and are key chromophores in vision. These functions depend on transfer across membranes, and carrier proteins to shuttle retinoids to specific cell compartments. Natural retinoids, ultimately derived from plant carotenoids by metabolism to all-trans retinol, are lipophilic and consist of a cyclohexenyl (β-ionone) moiety linked to a polyene chain. This structure constrains the orientation of retinoids within lipid membranes. Cis-trans isomerization at double bonds of the polyene chain and s-cis/s-trans rotational isomerization at single bonds define the functional dichotomy of retinoids (signaling/vision) and specificities of interactions with specific carrier proteins and receptors. Metabolism of all-trans retinol to 11-cis retinal, transfer to photoreceptors, and removal and recycling of all-trans retinal generated by photoreceptor irradiation, is the key process underlying vision. All-trans retinol transferred into cells is metabolized to all-trans retinoic acid and shuttled to the cell nucleus to regulate gene expression controlling organ, tissue and cell differentiation, and cellular homeostasis. Research methods need to address the potential of photoisomerization in vitro to confound research results, and data should be interpreted in the context of membrane-association properties of retinoids and physiological concentrations in vivo. Despite a century of research, there are many fundamental questions of retinoid cellular biochemistry and molecular biology still to be answered. Computational modeling techniques will have an important role for understanding the nuances of vitamin A signaling and function.
Collapse
Affiliation(s)
- Chris P F Redfern
- School of Natural & Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom.
| |
Collapse
|
3
|
Zhang H, Wu X, Wei Y, Zhu C. Radical-Mediated Heck-Type Alkylation: Stereoconvergent Synthesis of Functionalized Polyenes. Org Lett 2019; 21:7568-7572. [DOI: 10.1021/acs.orglett.9b02838] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hong Zhang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China
| | - Xinxin Wu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China
| | - Yunlong Wei
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China
| | - Chen Zhu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China
- Key Laboratory of Synthesis Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
4
|
Bull JN, West CW, Anstöter CS, da Silva G, Bieske EJ, Verlet JRR. Ultrafast photoisomerisation of an isolated retinoid. Phys Chem Chem Phys 2019; 21:10567-10579. [PMID: 31073587 DOI: 10.1039/c9cp01624d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The photoinduced excited state dynamics of gas-phase trans-retinoate (deprotonated trans-retinoic acid, trans-RA-) are studied using tandem ion mobility spectrometry coupled with laser spectroscopy, and frequency-, angle- and time-resolved photoelectron imaging. Photoexcitation of the bright S3(ππ*) ← S0 transition leads to internal conversion to the S1(ππ*) state on a ≈80 fs timescale followed by recovery of S0 and concomitant isomerisation to give the 13-cis (major) and 9-cis (minor) photoisomers on a ≈180 fs timescale. The sub-200 fs stereoselective photoisomerisation parallels that for the retinal protonated Schiff base chromophore in bacteriorhodopsin. Measurements on trans-RA- in methanol using the solution photoisomerisation action spectroscopy technique show that 13-cis-RA- is also the principal photoisomer, although the 13-cis and 9-cis photoisomers are formed with an inverted branching ratio with photon energy in methanol when compared with the gas phase, presumably due to solvent-induced modification of potential energy surfaces and inhibition of electron detachment processes. Comparison of the gas-phase time-resolved data with transient absorption spectroscopy measurements on retinoic acid in methanol suggest that photoisomerisation is roughly six times slower in solution. This work provides clear evidence that solvation significantly affects the photoisomerisation dynamics of retinoid molecules.
Collapse
Affiliation(s)
- James N Bull
- School of Chemistry, Norwich Research Park, University of East Anglia, Norwich NR4 7TJ, UK.
| | - Christopher W West
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-Ku, Kyoto 606-8502, Japan
| | - Cate S Anstöter
- Department of Chemistry, Durham University, Durham DH1 3LE, UK
| | - Gabriel da Silva
- Department of Chemical Engineering, University of Melbourne, Parkville, VIC 3010, Australia
| | - Evan J Bieske
- School of Chemistry, University of Melbourne, Parkville, VIC 3010, Australia
| | - Jan R R Verlet
- Department of Chemistry, Durham University, Durham DH1 3LE, UK
| |
Collapse
|
5
|
Muccio DD, Atigadda VR, Brouillette WJ, Bland KI, Krontiras H, Grubbs CJ. Translation of a Tissue-Selective Rexinoid, UAB30, to the Clinic for Breast Cancer Prevention. Curr Top Med Chem 2017; 17:676-695. [PMID: 27320329 PMCID: PMC9904082 DOI: 10.2174/1568026616666160617093604] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 03/25/2016] [Accepted: 03/25/2016] [Indexed: 11/22/2022]
Abstract
This review focuses on our efforts to translate a low-toxicity retinoid X receptor-selective agonist, UAB30, to the clinic for the prevention of breast cancers. The review is divided into several sections. First, the current status of breast cancer prevention is discussed. Next, preclinical studies are presented that support translation of rexinoids to the clinic for cancer prevention. While current FDAapproved retinoids and rexinoids demonstrate profound effects in treating cancers, they lack sufficient safety for long term use in the high risk population that is otherwise disease free. The review stresses the need to identify cancer preventive drugs that are effective and safe in order to gain wide use in the clinic. Due to the heterogeneity of the disease, UAB30 is evaluated for the prevention of ER-positive and ER-negative mammary cancers. Since selective estrogen receptor modulators and aromatase inhibitors are used clinically to prevent and treat ER-positive breast cancers, preclinical studies also must demonstrate efficacy of UAB30 in combination with existing drugs under use in the clinic. To support an Investigational New Drug Application to the FDA, data on pharmacology and toxicity as well as mutagenicity is gathered prior to human trials. The review concludes with a discussion of the outcomes of human Phase 0/1 clinical trials that determine the safety and pharmacology of UAB30. These studies are essential before this agent is evaluated for efficacy in phase 2 trials. Success in phase 2 evaluation is critical before long-term and costly phase 3 trials are undertaken. The lack of surrogate biomarkers as endpoints for phase 2 evaluation of rexinoid preventive agents is discussed.
Collapse
Affiliation(s)
- Donald D. Muccio
- Department of Chemistry, University of Alabama at Birmingham, Birmingham Alabama 35294 USA
| | - Venkatram R Atigadda
- Department of Chemistry, University of Alabama at Birmingham, Birmingham Alabama 35294 USA
| | - Wayne J Brouillette
- Department of Chemistry, University of Alabama at Birmingham, Birmingham Alabama 35294 USA
| | - Kirby I Bland
- Department of Surgery, University of Alabama at Birmingham, Birmingham Alabama 35294 USA
| | - Helen Krontiras
- Department of Surgery, University of Alabama at Birmingham, Birmingham Alabama 35294 USA
| | - Clinton J Grubbs
- Department of Surgery, University of Alabama at Birmingham, Birmingham Alabama 35294 USA
| |
Collapse
|
6
|
Yang L, Ye J, Gao Y, Deng D, Lin Y, Ning G. One-Step Stereoselective Synthesis of (2Z,4Z,6Z,8Z)-Decatetraene Diketone from Pyrylium Salts. European J Org Chem 2013. [DOI: 10.1002/ejoc.201301685] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|