Zhang C, Ma D, Yang S, Liang J. Theoretical Investigation of Promising Molecules for Obtaining Complexes with Planar Tetracoordinate Carbon.
ACS OMEGA 2016;
1:620-625. [PMID:
31457151 PMCID:
PMC6640768 DOI:
10.1021/acsomega.6b00170]
[Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 09/12/2016] [Indexed: 06/10/2023]
Abstract
We have theoretically investigated the stability, chemical bonding, and coordination ability of the 2-Me-2-borabicyclo[1.1.0]but-1(3)-ene (2-Me-2BB) molecule using density functional theory and ab initio molecular dynamics (AIMD) simulations. Calculated results indicated that 2-Me-2BB is both thermodynamically and kinetically stable. The C=C bonds in 2-Me-2BB contain a π bond and a charge shift (CS) bond, different from those in 1-Me-borirene and cyclopropylene. Moreover, 2-Me-2BB can be a σ donor, leading to the formation of TM(2-Me-2BB)L n complexes containing planar tetracoordinate carbon (ptC) with transition metals (TM = Sc-Cu), in which the lone electron pair of 2-Me-2BB results from its ionic resonance form. The lengths and Wiberg bond indices of the TM-ptC bond in TM(2-Me-2BB)L n (TM = Sc-Cu) reveal that 2-Me-2BB can be a ligand similar to N-heterocyclic carbene. Therefore, 2-Me-2BB and its derivatives are promising molecules to obtain complexes with ptC. The natural charges on TM atoms in TM(2-Me-2BB)L n (TM = Sc-Cu) complexes range from -0.97 to 1.54e, indicating that such complexes with ptC might have potential applications in catalytic chemistry.
Collapse