1
|
Souza TM, Pena LB, Da Silva JLF, Galvão BRL. Data-driven stabilization of Ni mPd n-m nanoalloys: a study using density functional theory and data mining approaches. Phys Chem Chem Phys 2024; 26:15877-15890. [PMID: 38804680 DOI: 10.1039/d4cp00672k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Green hydrogen, generated through the electrolysis of water, is a viable alternative to fossil fuels, although its adoption is hindered by the high costs associated with the catalysts. Among a wide variety of potential materials, binary nickel-palladium (NiPd) systems have garnered significant attention, particularly at the nanoscale, for their efficacious roles in catalyzing hydrogen and oxygen evolution reactions. However, our atom-level understanding of the descriptors that drive their energetic stability at the nanoscale remains largely incomplete. Here, we investigate by density functional theory calculations the descriptors that drives the stability of the NimPdn-m clusters for different sizes (n = 13, 27, 41) and compositions. To achieve our goals, a large number of trial configurations were generated and selected using data mining algorithms (k-means, t-SNE) and genetic algorithms, while the most important physical-chemical descriptors were identified using Spearman correlation analysis. We have found that core-shell formation, with the smaller Ni atoms lying in the center of the particle, plays a major role in the stabilization of the nanoalloys, and this effect causes the alloys to assume a icosahedral-fragment configuration (as the unary nickel cluster) instead of a fcc fragment (as the unary palladium cluster). However, the core-shell formation in this alloy is unique in that Pd poor compositions exhibit scattered Pd atoms on the surface. As the palladium content increases, this gives rise to the complete Pd shell. This stabilization mechanism is quantitatively supported by the different correlations observed in the number of Ni-Ni and Pd-Pd bonds with energy, in which the latter tends to decrease alloy stability. Furthermore, a notable trend is the correlation between the coordination number of Ni atoms with alloy stabilization, while the coordination of Pd atoms shows an inverse correlation.
Collapse
Affiliation(s)
- Tiago M Souza
- Centro Federal de Educação Tecnológica de Minas Gerais, CEFET-MG, Av. Amazonas 5253, 30421-169 Belo Horizonte, Minas Gerais, Brazil.
| | - Lucas B Pena
- Centro Federal de Educação Tecnológica de Minas Gerais, CEFET-MG, Av. Amazonas 5253, 30421-169 Belo Horizonte, Minas Gerais, Brazil.
| | - Juarez L F Da Silva
- São Carlos Institute of Chemistry, University of São Paulo, P.O. Box 780, 13560-970 São Carlos, SP, Brazil
| | - Breno R L Galvão
- Centro Federal de Educação Tecnológica de Minas Gerais, CEFET-MG, Av. Amazonas 5253, 30421-169 Belo Horizonte, Minas Gerais, Brazil.
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque 87131, New Mexico, USA
| |
Collapse
|
2
|
Wang H, Zhang Y, Zhang Y, Li Y, Wang X, Wang H, Wu WD, Bao X, Wu Z. Aerosol Spray Drying Guided Synthesis of Ultrasmall Alloyed Bimetallic Nanoparticles Supported on Silica for Catalytic Semihydrogenation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2204744. [PMID: 36494189 DOI: 10.1002/smll.202204744] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/03/2022] [Indexed: 06/17/2023]
Abstract
Supported bimetallic nanoparticles (NPs) with ultrasmall sizes and homogeneous alloying are attractive for catalysis. However, facile synthesis of this type of material remains very challenging. Here, the aerosol drying impregnation method for rapid, scalable, and general synthesis of silica-supported bimetallic NPs is proposed. The method relies on aerosol spray drying to promote the mixing and dispersing of binary metal precursors on SiO2 . It is capable of controlling the composition and size of bimetallic NPs and avoids the use of expensive metal complex salts and complicated experiment procedures. Twelve permutations combining a noble metal (Pd, Ru, and Pt) and a base one (Fe, Co, Ni, and Cu) with ultrasmall sizes (1.4-2.2 nm in average size), uniform dispersion, and good alloying are synthesized. Interesting activity and selectivity trends in catalytic semihydrogenation of phenylacetylene over the supported Pd-based NPs can be observed. The silica-supported PdNi NPs deliver both high activity and styrene selectivity. Spectroscopic and density functional theory calculation results reveal the improved chemoselectivity originated from the suitably down-shifted d-band center of the PdNi NPs inducing an increased energy barrier for overhydrogenation and a weakened styrene adsorption.
Collapse
Affiliation(s)
- Hao Wang
- Particle Engineering Laboratory, School of Chemical and Environmental Engineering, and Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, No. 199, Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, P. R. China
| | - Yi Zhang
- Department of Chemistry, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, No. 199, Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, P. R. China
| | - Yali Zhang
- Particle Engineering Laboratory, School of Chemical and Environmental Engineering, and Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, No. 199, Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, P. R. China
| | - Yunqing Li
- Particle Engineering Laboratory, School of Chemical and Environmental Engineering, and Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, No. 199, Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, P. R. China
| | - Xiaoning Wang
- Particle Engineering Laboratory, School of Chemical and Environmental Engineering, and Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, No. 199, Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, P. R. China
| | - Huifang Wang
- Department of Chemistry, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, No. 199, Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, P. R. China
| | - Winston Duo Wu
- Particle Engineering Laboratory, School of Chemical and Environmental Engineering, and Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, No. 199, Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, P. R. China
| | - Xiaoguang Bao
- Department of Chemistry, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, No. 199, Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, P. R. China
| | - Zhangxiong Wu
- Particle Engineering Laboratory, School of Chemical and Environmental Engineering, and Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, No. 199, Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, P. R. China
| |
Collapse
|
12
|
Cervantes-Flores A, Cruz-Martínez H, Solorza-Feria O, Calaminici P. A first-principles study of Ni n Pd n (n = 1 - 5) clusters. J Mol Model 2017; 23:161. [PMID: 28409287 DOI: 10.1007/s00894-017-3327-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 03/17/2017] [Indexed: 10/19/2022]
Abstract
A first-principle investigation of structures and properties of Ni n Pd n (n=1-5) clusters is presented. For this study, the linear combination of Gaussian-type orbitals auxiliary density functional theory (LCGTO-ADFT) method has been employed. In order to determine the lowest energy structures, several isomers in different spin multiplicities were studied, for each cluster size. Initial structures, for which successive geometry optimization was computed without any constrain, were taken along Born-Oppenheimer molecular dynamics (BOMD) trajectories. To discriminate between minima and transition state structures, harmonic frequency analyses were performed at the optimized structures. Ground state structures, bond lengths, harmonic frequencies, dissociation energy, ionization potential, electron affinity and spin density plots are presented. This work demonstrates, that the Pd atoms prefer to allocate on the surface of the cluster structures whose core is formed by the 3d TM atoms type. Moreover, it has been observed that the ground-state structure spin multiplicity increases as the system size grows. The results of this study contribute to gain insight into how structures and energy properties change with cluster size in bimetallic Pd-based alloys.
Collapse
Affiliation(s)
- Aldo Cervantes-Flores
- Departamento de Química, CINVESTAV, Av. Instituto Politécnico Nacional 2508, AP 14-740, México, D.F., 07000, México
| | - Heriberto Cruz-Martínez
- Programa de Doctorado en Nanociencias y Nanotecnología, CINVESTAV, Av. Instituto Politécnico Nacional 2508, AP 14-740, México, D.F., 07000, México
| | - Omar Solorza-Feria
- Departamento de Química, CINVESTAV, Av. Instituto Politécnico Nacional 2508, AP 14-740, México, D.F., 07000, México
| | - Patrizia Calaminici
- Departamento de Química, CINVESTAV, Av. Instituto Politécnico Nacional 2508, AP 14-740, México, D.F., 07000, México.
| |
Collapse
|