1
|
Jin S, Juanes M, van der Linde C, Ončák M, Beyer MK. Symmetry reduction induced by argon tagging gives access to low-lying excited states of FeH + in the overtone region of the Fe-H stretching mode. Phys Chem Chem Phys 2024; 26:26363-26369. [PMID: 39385679 PMCID: PMC11465007 DOI: 10.1039/d4cp03270e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024]
Abstract
Iron is the most abundant transition metal in the interstellar medium (ISM), and is thought to be involved in a variety of astrochemical processes. Here, we present the infrared multiple photon dissociation (IRMPD) spectra of Ar1,2FeH+ and their deuterated isotopologues in the region of 2240-14 000 cm-1. The Fe-H overtone stretching mode in ArFeH+ and Ar2FeH+ is observed at 3636 ± 28 cm-1 and 3659 ± 13 cm-1, respectively. Deuteration shifts these bands to 2618 ± 31 cm-1 and 2650 ± 14 cm-1 in ArFeD+ and Ar2FeD+, respectively. Additionally, the spectra of Ar2FeH+ and Ar2FeD+ feature broad transitions at ∼2200-4000 cm-1 and ∼4500-6500 cm-1. We assign these bands to electronic transitions from the thermally populated X5A2/X'5A1 ground state manifold into the A'5B2 and B5A1 states, which we model with multi-reference quantum chemical calculations including spin-orbit coupling. The calculations show that these transitions are symmetry forbidden in FeH+ and in the equilibrium geometry of ArFeH+/ArFeD+, while the zero-point oscillation of the bending mode of the triatomic molecule leads to some oscillator strength. Upon addition of the second argon atom, the transitions become weakly allowed in the equilibrium geometry of Ar2FeH+/Ar2FeD+ due to symmetry reduction from C∞v to C2v.
Collapse
Affiliation(s)
- Shan Jin
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria.
| | - Marcos Juanes
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria.
- Departamento Química Física y Química Inorgánica, University of Valladolid, Paseo de Belén 7, 47011 Valladolid, Spain
| | - Christian van der Linde
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria.
| | - Milan Ončák
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria.
| | - Martin K Beyer
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria.
| |
Collapse
|
2
|
Aguilar-Galindo F, Nguyen VTT, Singh R, Domaracka A, Huber BA, Díaz-Tendero S, Rousseau P, Maclot S. Unexpected and delayed fragmentation dynamics of the organometallic ferrocene induced by ion-collision. Phys Chem Chem Phys 2024; 26:7638-7646. [PMID: 38363201 DOI: 10.1039/d3cp05430f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
We have investigated the fragmentation dynamics of the organometallic ferrocene molecule after interaction with multiply charged ions using multicoincidence mass spectrometry and quantum chemistry calculations. We observed unexpected fragmentation dynamics of the two-body breakup channels from ferrocene dications revealing a charge screening effect from the iron atom and delayed fragmentation dynamics. These observations are rationalized through the population of a specific long-lived excited state, where one positive charge is located on each cyclopentadienyl ring.
Collapse
Affiliation(s)
- F Aguilar-Galindo
- Department of Chemistry, Universidad Autónoma de Madrid, 28049, Madrid, Spain
- Institute for Advanced Research in Chemistry (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - V T T Nguyen
- Normandie Univ., ENSICAEN, UNICAEN, CEA, CNRS, CIMAP, 14000, Caen, France
| | - R Singh
- Normandie Univ., ENSICAEN, UNICAEN, CEA, CNRS, CIMAP, 14000, Caen, France
| | - A Domaracka
- Normandie Univ., ENSICAEN, UNICAEN, CEA, CNRS, CIMAP, 14000, Caen, France
| | - B A Huber
- Normandie Univ., ENSICAEN, UNICAEN, CEA, CNRS, CIMAP, 14000, Caen, France
| | - S Díaz-Tendero
- Department of Chemistry, Universidad Autónoma de Madrid, 28049, Madrid, Spain
- Institute for Advanced Research in Chemistry (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - P Rousseau
- Normandie Univ., ENSICAEN, UNICAEN, CEA, CNRS, CIMAP, 14000, Caen, France
| | - S Maclot
- Institut Lumière Matière UMR 5306, Université Claude Bernard Lyon 1, CNRS, Univ Lyon, 69100 Villeurbanne, France.
| |
Collapse
|
3
|
Murakami T, Matsumoto N, Fujihara T, Takayanagi T. Possible Roles of Transition Metal Cations in the Formation of Interstellar Benzene via Catalytic Acetylene Cyclotrimerization. Molecules 2023; 28:7454. [PMID: 37959873 PMCID: PMC10649463 DOI: 10.3390/molecules28217454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 10/28/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous interstellar molecules. However, the formation mechanisms of PAHs and even the simplest cyclic aromatic hydrocarbon, benzene, are not yet fully understood. Recently, we reported the statistical and dynamical properties in the reaction mechanism of Fe+-catalyzed acetylene cyclotrimerization, whereby three acetylene molecules are directly converted to benzene. In this study, we extended our previous work and explored the possible role of the complex of other 3d transition metal cations, TM+ (TM = Sc, Ti, Mn, Co, and Ni), as a catalyst in acetylene cyclotrimerization. Potential energy profiles for bare TM+-catalyst (TM = Sc and Ti), for TM+NC--catalyst (TM = Sc, Ti, Mn, Co, and Ni), and for TM+-(H2O)8-catalyst (TM = Sc and Ti) systems were obtained using quantum chemistry calculations, including the density functional theory levels. The calculation results show that the scandium and titanium cations act as efficient catalysts in acetylene cyclotrimerization and that reactants, which contain an isolated acetylene and (C2H2)2 bound to a bare (ligated) TM cation (TM = Sc and Ti), can be converted into a benzene-metal-cation product complex without an entrance barrier. We found that the number of electrons in the 3d orbitals of the transition metal cation significantly contributes to the catalytic efficiency in the acetylene cyclotrimerization process. On-the-fly Born-Oppenheimer molecular dynamics (BOMD) simulations of the Ti+-NC- and Ti+-(H2O)8 complexes were also performed to comprehensively understand the nuclear dynamics of the reactions. The computational results suggest that interstellar benzene can be produced via acetylene cyclotrimerization reactions catalyzed by transition metal cation complexes.
Collapse
Affiliation(s)
- Tatsuhiro Murakami
- Department of Chemistry, Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama City 338-8570, Japan; (N.M.); (T.F.)
- Department of Materials & Life Sciences, Faculty of Science & Technology, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo 102-8554, Japan
| | - Naoki Matsumoto
- Department of Chemistry, Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama City 338-8570, Japan; (N.M.); (T.F.)
| | - Takashi Fujihara
- Department of Chemistry, Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama City 338-8570, Japan; (N.M.); (T.F.)
- Comprehensive Analysis Center for Science, Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama City 338-8570, Japan
| | - Toshiyuki Takayanagi
- Department of Chemistry, Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama City 338-8570, Japan; (N.M.); (T.F.)
| |
Collapse
|
4
|
Colley JE, Dynak NJ, Blais JRC, Duncan MA. Photodissociation Spectroscopy and Photofragment Imaging of the Fe +(Acetylene) Complex. J Phys Chem A 2023; 127:1244-1251. [PMID: 36701377 DOI: 10.1021/acs.jpca.2c08456] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Tunable laser photodissociation spectroscopy in the 700-400 nm region and photofragment imaging experiments are employed to investigate the Fe+(acetylene) ion-molecule complex. At energies above a threshold at 679 nm, continuous dissociation is detected throughout the visible wavelength region, with regions of broad structure. Comparison to the spectrum predicted by time-dependent density functional theory (TD-DFT) indicates that the complex has a quartet ground state. The dissociation threshold for Fe+(acetylene) at 679 nm provides the dissociation energy on the quartet potential energy surface. Correction for the atomic quartet-sextet spin state energy difference provides an adiabatic dissociation energy of 36.8 ± 0.2 kcal/mol. Photofragment imaging of the Fe+ photoproduct produced at 603.5 nm produces significant kinetic energy release (KER). The photon energy and the maximum value of the KER provide an upper limit on the dissociation energy of D0 ≤ 34.6 ± 3.2 kcal/mol. The dissociation energies determined from the spectroscopy and photofragment imaging experiments agree nicely with the value determined previously by collision-induced dissociation (38.0 ± 2.6 kcal/mol). However, both values are significantly lower than those produced by computational chemistry at the DFT level using different functionals recommended for transition-metal chemistry.
Collapse
Affiliation(s)
- Jason E Colley
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Nathan J Dynak
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - John R C Blais
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Michael A Duncan
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
5
|
Brathwaite AD, Marks JH, Webster IJ, Batchelor AG, Ward TD, Duncan MA. Coordination and Spin States in Fe +(C 2H 2) n Complexes Studied with Selected-Ion Infrared Spectroscopy. J Phys Chem A 2022; 126:9680-9690. [PMID: 36517042 DOI: 10.1021/acs.jpca.2c07556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Fe+(acetylene)n ion-molecule complexes are produced in a supersonic molecular beam with pulsed laser vaporization. These ions are mass selected and studied with infrared photodissociation spectroscopy in the C-H stretching region, complemented by computational chemistry calculations. All C-H stretch vibrations are shifted to frequencies lower than the vibrations of isolated acetylene because of the charge transfer that occurs between the metal ion and the molecules. Complexes in the size range of n = 1-4 are found to have structures with individual acetylene molecules bound to the core metal ion via cation-π interactions. The coordination is completed with four ligands in a structure close to a distorted tetrahedron. Larger complexes in the range of n = 5-8 have external acetylene molecules solvating this n = 4 core ion via CH-π bonding to inner-shell ligands. DFT computations predict that quartet spin states are more stable for all complex sizes, but infrared spectra for quartet and doublet spin states are quite similar, precluding definitive determination of the spin states. There is no evidence for any of these complexes having acetylenes coupled into reacted structures. This is consistent with computed thermochemistry, which finds significant activation barriers to such reactions.
Collapse
Affiliation(s)
- Antonio D Brathwaite
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Joshua H Marks
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Ian J Webster
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Anna G Batchelor
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Timothy D Ward
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Michael A Duncan
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
6
|
Murakami T, Takayanagi T. Interstellar Benzene Formation Mechanisms via Acetylene Cyclotrimerization Catalyzed by Fe + Attached to Water Ice Clusters: Quantum Chemistry Calculation Study. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227767. [PMID: 36431867 PMCID: PMC9693163 DOI: 10.3390/molecules27227767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022]
Abstract
Benzene is the simplest building block of polycyclic aromatic hydrocarbons and has previously been found in the interstellar medium. Several barrierless reaction mechanisms for interstellar benzene formation that may operate under low-temperature and low-pressure conditions in the gas phase have been proposed. In this work, we studied different mechanisms for interstellar benzene formation based on acetylene cyclotrimerization catalyzed by Fe+ bound to solid water clusters through quantum chemistry calculations. We found that benzene is formed via a single-step process with one transition state from the three acetylene molecules on the Fe+(H2O)n (n = 1, 8, 10, 12 and 18) cluster surface. Moreover, the obtained mechanisms differed from those of single-atom catalysis, in which benzene is sequentially formed via multiple steps.
Collapse
Affiliation(s)
- Tatsuhiro Murakami
- Department of Chemistry, Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama 338-8570, Japan
- Department of Materials & Life Sciences, Faculty of Science & Technology, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo 102-8554, Japan
- Correspondence: (T.M.); (T.T.); Tel.: +81-48-858-9113 (T.M. & T.T.)
| | - Toshiyuki Takayanagi
- Department of Chemistry, Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama 338-8570, Japan
- Correspondence: (T.M.); (T.T.); Tel.: +81-48-858-9113 (T.M. & T.T.)
| |
Collapse
|
7
|
Methikkalam RRJ, Ghosh J, Bhuin RG, Bag S, Ragupathy G, Pradeep T. Iron assisted formation of CO2 over condensed CO and its relevance to interstellar chemistry. Phys Chem Chem Phys 2020; 22:8491-8498. [DOI: 10.1039/c9cp06983f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Catalytic conversion of CO to CO2 assisted by neutral iron atoms has been investigated in ultrahigh vacuum (UHV) under cryogenic conditions (10 K).
Collapse
Affiliation(s)
- Rabin Rajan J. Methikkalam
- DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE)
- Department of Chemistry
- Indian Institute of Technology Madras
- Chennai 600 036
- India
| | - Jyotirmoy Ghosh
- DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE)
- Department of Chemistry
- Indian Institute of Technology Madras
- Chennai 600 036
- India
| | - Radha Gobinda Bhuin
- DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE)
- Department of Chemistry
- Indian Institute of Technology Madras
- Chennai 600 036
- India
| | - Soumabha Bag
- DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE)
- Department of Chemistry
- Indian Institute of Technology Madras
- Chennai 600 036
- India
| | - Gopi Ragupathy
- DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE)
- Department of Chemistry
- Indian Institute of Technology Madras
- Chennai 600 036
- India
| | - Thalappil Pradeep
- DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE)
- Department of Chemistry
- Indian Institute of Technology Madras
- Chennai 600 036
- India
| |
Collapse
|
8
|
Data-Driven Astrochemistry: One Step Further within the Origin of Life Puzzle. Life (Basel) 2018; 8:life8020018. [PMID: 29857564 PMCID: PMC6027145 DOI: 10.3390/life8020018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 05/20/2018] [Accepted: 05/22/2018] [Indexed: 01/15/2023] Open
Abstract
Astrochemistry, meteoritics and chemical analytics represent a manifold scientific field, including various disciplines. In this review, clarifications on astrochemistry, comet chemistry, laboratory astrophysics and meteoritic research with respect to organic and metalorganic chemistry will be given. The seemingly large number of observed astrochemical molecules necessarily requires explanations on molecular complexity and chemical evolution, which will be discussed. Special emphasis should be placed on data-driven analytical methods including ultrahigh-resolving instruments and their interplay with quantum chemical computations. These methods enable remarkable insights into the complex chemical spaces that exist in meteorites and maximize the level of information on the huge astrochemical molecular diversity. In addition, they allow one to study even yet undescribed chemistry as the one involving organomagnesium compounds in meteorites. Both targeted and non-targeted analytical strategies will be explained and may touch upon epistemological problems. In addition, implications of (metal)organic matter toward prebiotic chemistry leading to the emergence of life will be discussed. The precise description of astrochemical organic and metalorganic matter as seeds for life and their interactions within various astrophysical environments may appear essential to further study questions regarding the emergence of life on a most fundamental level that is within the molecular world and its self-organization properties.
Collapse
|
9
|
Do dihydroxymagnesium carboxylates form Grignard-type reagents? A theoretical investigation on decarboxylative fragmentation. J Mol Model 2018; 24:106. [PMID: 29589173 DOI: 10.1007/s00894-018-3639-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 03/12/2018] [Indexed: 10/17/2022]
Abstract
Dihydroxymagnesium carboxylates [(OH)2MgO2CR] were probed for decarboxylation on a theoretical level, by utilizing both Møller-Plesset perturbation theory (MP2) and density functional theory (B3LYP-DFT) computations. This study is connected to the question of whether this recently introduced, astrobiologically relevant chemical class may form Grignard-type reagent molecules. To extract trends for a broad molecular mass range, different linear alkyl chain lengths between C4 and C11 were computed. The forward energy barrier for decarboxylation reactions increases linearly as a function of the ligand's chain length. Decarboxylation-type fragmentations of these organomagnesium compounds seem to be improbable in non-catalytic, low energetic environments. A high forward energy barrier (EMP2 > 55 kcal mol-1) towards a described transition state restricts the release of CO2. Nevertheless, we propose the release of CO2 on a theoretical level, as been revealed via an intramolecular nucleophilic attack mechanism. Once the challenging transition state for decarboxylation is overcome, a stable Mg-C bond is formed. These mechanistic insights were gained by help of natural bond orbital analysis. The Cα atom (first carbon atom in the ligand chain attached to the carboxyl group) is thought to prefer binding towards the electrophilic magnesium coordination center, rather than towards the electrophilic CO2-carbon atom. Additionally, the putatively formed Grignard-type OH-bearing product molecules possess a more polarized Mg-C bond in comparison to RMgCl species. Therefore, carbanion formation from OH-bearing Grignard-type molecules is made feasible for triggering C-C bond formation reactions. Graphical abstract This study asks whether recently introduced, astrobiologically dihydroxymagnesium carboxylates form Grignard-type reagent molecules via decarboxylative fragmentation.
Collapse
|
10
|
Abstract
The rich diversity and complexity of organic matter found in meteorites is rapidly expanding our knowledge and understanding of extreme environments from which the early solar system emerged and evolved. Here, we report the discovery of a hitherto unknown chemical class, dihydroxymagnesium carboxylates [(OH)2MgO2CR]-, in meteoritic soluble organic matter. High collision energies, which are required for fragmentation, suggest substantial thermal stability of these Mg-metalorganics (CHOMg compounds). This was corroborated by their higher abundance in thermally processed meteorites. CHOMg compounds were found to be present in a set of 61 meteorites of diverse petrological classes. The appearance of this CHOMg chemical class extends the previously investigated, diverse set of CHNOS molecules. A connection between the evolution of organic compounds and minerals is made, as Mg released from minerals gets trapped into organic compounds. These CHOMg metalorganic compounds and their relation to thermal processing in meteorites might shed new light on our understanding of carbon speciation at a molecular level in meteorite parent bodies.
Collapse
|
11
|
Fioroni M, DeYonker NJ. H 2 Formation on Cosmic Grain Siliceous Surfaces Grafted with Fe + : A Silsesquioxanes-Based Computational Model. Chemphyschem 2016; 17:3390-3394. [PMID: 27617703 DOI: 10.1002/cphc.201600607] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 08/02/2016] [Indexed: 11/08/2022]
Abstract
Cosmic siliceous dust grains are involved in the synthesis of H2 in the inter-stellar medium. In this work, the dust grain siliceous surface is represented by a hydrogen Fe-metalla-silsesquioxane model of general formula: [Fe(H7 Si7 O12-n )(OH)n ]+ (n=0,1,2) where Fe+ behaves like a single-site heterogeneous catalyst grafted on a siliceous surface synthesizing H2 from H. A computational analysis is performed using two levels of theory (B3LYP-D3BJ and MP2-F12) to quantify the thermodynamic driving force of the reaction: [Fe-T7H7 ]+ +4H→[Fe-T7H7 (OH)2 ]+ +H2 . The general outcomes are: 1) H2 synthesis is thermodynamically strongly favored; 2) Fe-H / Fe-H2 barrier-less formation potential; 3) chemisorbed H-Fe leads to facile H2 synthesis at 20≤T≤100 K; 4) relative spin energetics and thermodynamic quantities between the B3LYP-D3BJ and MP2-F12 levels of theory are in qualitative agreement. The metalla-silsesquioxane model shows how Fe+ fixed on a siliceous surface can potentially catalyze H2 formation in space.
Collapse
Affiliation(s)
- Marco Fioroni
- Department of Chemistry, 213 Smith Chemistry Building, The University of Memphis, Memphis, TN, 38152, USA.,Konrad-Mueller Str. 17, 52249, Eschweiler, Germany
| | - Nathan J DeYonker
- Department of Chemistry, 213 Smith Chemistry Building, The University of Memphis, Memphis, TN, 38152, USA
| |
Collapse
|