1
|
Roy T, Satpati S, Sinjari A, Anoop A, Thimmakondu VS, Ghosal S. Energetic and Spectroscopic Properties of Astrophysically Relevant MgC 4H Radicals Using High-Level Ab Initio Calculations. J Phys Chem A 2024; 128:1466-1476. [PMID: 38364260 DOI: 10.1021/acs.jpca.3c06828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
Considering the importance of magnesium-bearing hydrocarbon molecules (MgCnH; n = 2, 4, and 6) in the carbon-rich circumstellar envelopes (e.g., IRC+10216), a total of 28 constitutional isomers of MgC4H have been theoretically investigated using density functional theory (DFT) and coupled-cluster methods. The zero-point vibrational energy corrected relative energies at the ROCCSD(T)/cc-pCVTZ level of theory reveal that the linear isomer, 1-magnesapent-2,4-diyn-1-yl (1, 2Σ+), is the global minimum geometry on the MgC4H potential energy surface. The latter has been detected both in the laboratory and in the evolved carbon star, IRC+10216. The calculated spectroscopic data for 1 match well with the experimental observations (error ∼ 0.78%) which validates our theoretical methodology. Plausible isomerization processes happening among different isomers are examined using DFT and coupled-cluster methods. CASPT2 calculations have been performed for a few isomers exhibiting multireference characteristics. The second most stable isomer, 1-ethynyl-1λ3-magnesacycloprop-2-ene-2,3-diyl (2, 2A1, μ = 2.54 D), is 146 kJ mol-1 higher in energy than 1 and possibly the next promising candidate to be detected in the laboratory or in the interstellar medium in future.
Collapse
Affiliation(s)
- Tarun Roy
- Department of Chemistry, National Institute of Technology Durgapur, M G Avenue, Durgapur, West Bengal 713209, India
| | - Sayon Satpati
- Department of Chemistry, National Institute of Technology Durgapur, M G Avenue, Durgapur, West Bengal 713209, India
| | - Aland Sinjari
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California 92182-1030, United States
- Nuclear Science Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, California 94720, United States
| | - Anakuthil Anoop
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Venkatesan S Thimmakondu
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California 92182-1030, United States
| | - Subhas Ghosal
- Department of Chemistry, National Institute of Technology Durgapur, M G Avenue, Durgapur, West Bengal 713209, India
| |
Collapse
|
2
|
Roy T, Thimmakondu VS, Ghosal S. New Carbenes and Cyclic Allenes Energetically Comparable to Experimentally Known 1-Azulenylcarbene. ACS OMEGA 2022; 7:30149-30160. [PMID: 36061723 PMCID: PMC9435053 DOI: 10.1021/acsomega.2c03224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
1-Azulenylcarbene (18; 0 kJ mol-1) is experimentally known as the key reactive intermediate for the rearrangement reactions of aryl carbenes in the laboratory. Here, using coupled-cluster methods up to the fc-CCSD(T)/cc-pVTZ//fc-CCSD(T)/cc-pVDZ level, thirteen new carbenes and one new cyclic allene are theoretically identified within the C11H8 elemental composition that either energetically lie below or very close to 18. While the cyclic allene, bicyclo[5.4.0]undeca-2,3,5,7,9,11-hexene (1; -166 kJ mol-1), is the experimentally known lowest energy isomer, three other cyclic allenes, bicyclo[5.4.0]undeca-1,2,4,6,8,10-hexene (2; -100 kJ mol-1), bicyclo[5.4.0]undeca-1,3,4,6,8,10-hexene (3; -97 kJ mol-1), and bicyclo[6.3.0]undeca-1,2,4,6,8,10-hexene (13; -42 kJ mol-1), demand new experimental studies. In total, thirty-one isomers are studied in this work (within -166 to +15 kJ mol-1 from 18) and all are found to be polar (μ ≠ 0). Among these, 1H-benzo[7]annulen-1-ylidene (17; -4 kJ mol-1; μ = 5.24 D), bicyclo[5.4.0]undeca-2,4,6,8,11-pentaene-10-ylidene (24; 13 kJ mol-1; μ = 7.59 D), 5-methylene-naphthalen-1-ylidene (26; 15 kJ mol-1; μ = 5.32 D), 6-methylene-naphthalen-2-ylidene (27; -43 kJ mol-1; μ = 6.60 D), and 8-methylene-naphthalen-2-ylidene (28; -39 kJ mol-1; μ = 5.55 D) are competitively polar compared to 18 (μ = 5.39 D). Therefore, these carbene molecules are potential targets for rotational spectroscopists and radioastronomers. Considering the importance of naphthyl and azulenylcarbenes in reactive intermediate chemistry, mechanisms of different rearrangement reactions and plausible formation pathways of some of these new carbenes are studied in this work using density functional theory.
Collapse
Affiliation(s)
- Tarun Roy
- Department
of Chemistry, National Institute of Technology
Durgapur, M G Avenue, Durgapur 713
209, India
| | - Venkatesan S. Thimmakondu
- Department
of Chemistry and Biochemistry, San Diego
State University, San Diego, California 92182-1030, United States
| | - Subhas Ghosal
- Department
of Chemistry, National Institute of Technology
Durgapur, M G Avenue, Durgapur 713
209, India
| |
Collapse
|
3
|
Ghosh A, Banerjee S, Sarkar S, Debnath T, Ash T, Roy RS, Das AK. Energetics and Spectroscopic Properties of Low‐lying CaC
6
H
2
Isomers: An Astrochemical Perspective. ChemistrySelect 2022. [DOI: 10.1002/slct.202200763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Avik Ghosh
- School of Mathematical and Computational Sciences, Indian Association for the Cultivation of Science, Jadavpur Kolkata 700032 India
| | - Soumadip Banerjee
- School of Mathematical and Computational Sciences, Indian Association for the Cultivation of Science, Jadavpur Kolkata 700032 India
| | - Subhendu Sarkar
- School of Mathematical and Computational Sciences, Indian Association for the Cultivation of Science, Jadavpur Kolkata 700032 India
| | - Tanay Debnath
- School of Mathematical and Computational Sciences, Indian Association for the Cultivation of Science, Jadavpur Kolkata 700032 India
| | - Tamalika Ash
- School of Mathematical and Computational Sciences, Indian Association for the Cultivation of Science, Jadavpur Kolkata 700032 India
| | - Ria Sinha Roy
- School of Mathematical and Computational Sciences, Indian Association for the Cultivation of Science, Jadavpur Kolkata 700032 India
| | - Abhijit K. Das
- School of Mathematical and Computational Sciences, Indian Association for the Cultivation of Science, Jadavpur Kolkata 700032 India
| |
Collapse
|
4
|
Lam CS, Lau KC. Thermochemical Trends in Carbon Chain Molecules HC 2kH/HC 2k-1H ( k = 1-6) Studied by Explicitly Correlated CCSD(T)-F12b Composite Methods. J Phys Chem A 2021; 125:5385-5396. [PMID: 34121392 DOI: 10.1021/acs.jpca.1c03428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We present a composite procedure based on explicitly correlated CCSD(T)-F12 calculations for accurate energetic predictions for carbon chain molecules HCnH encompassing both the even (HC2kH) and odd series (HC2k-1H), with the shorter members playing a key role in the evolution of cosmic carbon compounds in both circumstellar envelopes and interstellar medium. This approach considers the contributions of core-valence correlation, scalar relativistic effect, spin-orbit coupling, and zero-point vibrational energy in an additive manner. The computed ionization energies demonstrate outstanding agreement (±0.07 eV) up to a chain size of k = 6 and the literature heats of formation for k ≤ 2 are reproduced with "chemical accuracy" of 1 kcal mol-1. Among the various corrections included, the importance of core-valence correlation effect has been highlighted in the thermochemical calculations for carbon chain growth. The thermochemical trend toward infinite length is also highlighted by extrapolation of ionization energy and triplet-singlet splitting at the CCSD(T) level for k up to 15. The correlation between the end-group effect and the even-odd parity effect observed for HCnH chains has been established with the aid of intrinsic bond orbital localization.
Collapse
Affiliation(s)
- Chow-Shing Lam
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Kai-Chung Lau
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| |
Collapse
|
5
|
Roy T, Ghosal S, Thimmakondu VS. Six Low-Lying Isomers of C 11H 8 Are Unidentified in the Laboratory-A Theoretical Study. J Phys Chem A 2021; 125:4352-4364. [PMID: 34003652 DOI: 10.1021/acs.jpca.1c02247] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Isomers of C11H8 have been theoretically examined using density functional theory and coupled-cluster methods. The current investigation reveals that 2aH-cyclopenta[cd]indene (2), 7-ethynyl-1H-indene (6), 4-ethynyl-1H-indene (7), 6-ethynyl-1H-indene (8), 5-ethynyl-1H-indene (9), and 7bH-cyclopenta[cd]indene (10) remain elusive till date in the laboratory. The puckered low-lying isomer 2 lies at 9 kJ mol-1 below the experimentally known molecule, cyclobuta[de]naphthalene (3), at the fc-CCSD(T)/cc-pVTZ//fc-CCSD(T)/cc-pVDZ level of theory. 2 lies at 36 kJ mol-1 above the thermodynamically most stable and experimentally known isomer, 1H-cyclopenta[cd]indene (1), at the same level. It is identified that 1,2-H transfer from 1 yields 2H-cyclopenta[cd]indene (14) and subsequent 1,2-H shift from 14 yields 2. Appropriate transition states have been identified, and intrinsic reaction coordinate calculations have been carried out at the B3LYP/6-311+G(d,p) level of theory. Recently, 1-ethynyl-1H-indene (11) has been detected using synchrotron-based vacuum ultraviolet ionization mass spectrometry. 2-Ethynyl-1H-indene (4) and 3-ethynyl-1H-indene (5) have been synthetically characterized in the past. While the derivatives of 7bH-cyclopenta[cd]indene (10) have been isolated elsewhere, the parent compound remains unidentified till date in the laboratory. Although C11H8 is a key elemental composition of astronomical interest for the formation of polycyclic aromatic hydrocarbons in the interstellar medium, none of its low-lying isomers have been characterized by rotational spectroscopy though they are having a permanent dipole moment (μ ≠ 0). Therefore, energetic and spectroscopic properties have been computed, and the present investigation necessitates new synthetic studies on C11H8, in particular 2, 6-10, and also rotational spectroscopic studies on all low-lying isomers.
Collapse
Affiliation(s)
- Tarun Roy
- Department of Chemistry, National Institute of Technology Durgapur, M G Avenue, Durgapur 713 209, India
| | - Subhas Ghosal
- Department of Chemistry, National Institute of Technology Durgapur, M G Avenue, Durgapur 713 209, India
| | - Venkatesan S Thimmakondu
- Department of Chemistry and Biochemistry, San Diego State University, San Diego 92182-1030, California, United States
| |
Collapse
|
6
|
|
7
|
Pandey AP, Padidela UK, Thulasiraman LK, Sethu R, Vairaprakash P, Thimmakondu VS. MgC 6H 2 Isomers: Potential Candidates for Laboratory and Radioastronomical Studies. J Phys Chem A 2020; 124:7518-7525. [PMID: 32804506 DOI: 10.1021/acs.jpca.0c06401] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Eighty three stationary points of MgC6H2 isomers spanning from 0 to 215 kcal mol-1 have been theoretically identified using density functional theory at the B3LYP/6-311++G(2d,2p) level of theory. Among them, four low-lying isomers lying within 23.06 kcal mol-1 (1 eV) have been further characterized in detail using high-level coupled-cluster (CC) methods. The thermodynamically most stable isomer turns out to be 1-magnesacyclohepta-4-en-2,6-diyne (1). The other three isomers, 3-magnesahepta-1,4,6-triyne (2), 1-magnesacyclohepta-2,3,4-trien-6-yne (3), and 1-magnesahepta-2,4,6-triyne (4) lie 8.24, 19.76, and 21.36 kcal mol-1, respectively, above 1 at the ae-CCSD(T)/cc-pCVTZ level of theory. All the four isomers are polar with a permanent electric dipole moment (μ ≠ 0). Hence, they are potential candidates for rotational spectroscopic studies. Considering the recent identification of magnesium-bearing hydrocarbons such as, MgC2H and MgC4H in IRC+10216, it is believed that the current theoretical data may be of relevance to laboratory molecular spectroscopic and radioastronomical studies on MgC6H2 isomers. The energetic and spectroscopic information gathered in this study would aid the detection of low-lying MgC6H2 isomers in the laboratory, which are indispensable for radioastronomical studies. It is also noted here that neither the National Institute of Standards and Technology Chemistry WebBook nor the Kinetic Database for Astrochemistry lists any isomer of MgC6H2 at the moment. Therefore, these isomers are studied here theoretically for the very first time.
Collapse
Affiliation(s)
- Aditya P Pandey
- Electrical and Computer Engineering, College of Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States.,Department of Chemistry, Birla Institute of Technology and Science, Pilani, K K Birla Goa Campus, Goa - 403 726, India
| | - Uday Kumar Padidela
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, K K Birla Goa Campus, Goa - 403 726, India
| | - Loganathan Konda Thulasiraman
- Department of Chemistry, Alagappa Chettiar Government College of Engineering and Technology, Karaikudi 630 003, Tamil Nadu, India
| | - Ramakrishnan Sethu
- Department of Microbiology, University of Illinois, 601 South Goodwin Avenue, Urbana, Illinois 61801, United States
| | - Pothiappan Vairaprakash
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur - 613 401, Tamil Nadu, India
| | - Venkatesan S Thimmakondu
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California 92182-1030, United States
| |
Collapse
|
8
|
Thirumoorthy K, Cooksy AL, Thimmakondu VS. Si 2C 5H 2 isomers - search algorithms versus chemical intuition. Phys Chem Chem Phys 2020; 22:5865-5872. [PMID: 32108184 DOI: 10.1039/c9cp06145b] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The pros and cons of using search algorithms alone in identifying new geometries have been discussed by using the Si2C5H2 elemental composition as an example. Within 30 kcal mol-1 at the CCSD(T)/def2-TZVP//PBE0/def2-TZVP level of theory, the coalescence kick and cuckoo methods postulate merely four isomers (1, 3, 6, and 7) for Si2C5H2 (O. Yañez et. al., Chem. Commun., 2017, 53, 12112). On the contrary, chemical intuition yields fourteen (2, 4, 5, and 8-18) new isomers within the same energy range at the B3LYP/6-311++G(2d,2p) level of theory. Based on the relative energies of the first eleven isomers of Si2C5H2 (1, C2v, 0.00; 2, Cs, 21.39; 3, Cs, 21.95; 4, Cs, 22.76; 5, Cs, 24.74; 6, Cs, 25.34; 7, Cs, 25.64; 8, Cs, 25.79; 9, Cs, 27.20; 10, C2v, 28.59; and 11, C2v, 29.16 kcal mol-1) calculated at the CCSD(T)/cc-pVTZ level of theory, it is evident that the search algorithms had missed at least seven isomers in the same energy range. The relative energy gaps of isomers 12-18 fall in the range of 30-40 kcal mol-1 at the latter level of theory. Consequentially, this scenario triggers a speculation going forward with search algorithms alone in the search of all new isomers. While one cannot underestimate the power of these algorithms, the role of chemical intuition may not be completely neglected. Retrospectively, the fourteen new isomers found by chemical intuition may help in writing better search algorithms. All eighteen isomers - including the most stable isomer with a planar tetracoordinate carbon atom 1- remain elusive in the laboratory to date. Thus, structural and spectroscopic parameters have been presented here, which may possibly aid the future experimental studies.
Collapse
Affiliation(s)
- Krishnan Thirumoorthy
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore - 632 014, Tamil Nadu, India
| | | | | |
Collapse
|
9
|
Job N, Karton A, Thirumoorthy K, Cooksy AL, Thimmakondu VS. Theoretical Studies of SiC 4H 2 Isomers Delineate Three Low-Lying Silylidenes Are Missing in the Laboratory. J Phys Chem A 2020; 124:987-1002. [PMID: 31904236 DOI: 10.1021/acs.jpca.9b11742] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Eleven isomers of SiC4H2 lying within 50 kcal mol-1 have been theoretically investigated using density functional theory and high-level coupled-cluster methods. Among them, four isomers, 1-ethynyl-3-silacycloprop-1(2)-en-3-ylidene (1), diethynylsilylidene (2), 1-sila-1,2,3,4-pentatetraenylidene (4), and 1,3-butadiynylsilylidene (5), have already been identified in the laboratory. The current investigation reports three low-lying (<1 eV) silylidenes [2-methylenesilabicyclo[1.1.0]but-1(3)-en-4-ylidene (3), 4-sila-2-methylenebicyclo[1.1.0]but-1(3)-en-4-ylidene (6), and 3-ethynyl-1-silapropadienylidene (7)] and three high-lying (>1 eV) silylidenes [2-sila-(didehydrovinylidene)cyclopropene (8), an isomer with a planar tetracoordinate carbon (ptC) atom (10), and 1-ethynyl-1-silapropadienylidene (11)], which remain elusive in the laboratory to date. Isomer 9 also contains a ptC atom, which turned out to be a transition state at all levels. Though all isomers are polar (μ ≠ 0), rotational spectrum is available only for 4. Using matrix isolation, three isomers (1, 2, and 5) have been trapped in the laboratory at 10 K. Considering the astrochemical relevance of silicon-carbide clusters in the interstellar medium, the current theoretical data demand new molecular spectroscopic studies on SiC4H2. Surprisingly, unlike the isovalent C5H2 isomers, where the bent carbenes are yet to be identified in the laboratory, the bent silylidenes (2 and 5) have been trapped in the case of SiC4H2. In both the cases, molecules with transannular C-C and/or Si-C bonds remain elusive, though they lie in the low-lying region. Using suitable precursors, whether these peculiar geometries (especially 3 and 6) would be identified or not in the laboratory needs to be addressed by molecular spectroscopists. The present investigation documents structural and spectroscopic information of SiC4H2 isomers, which may compliment future molecular spectroscopic observations including radioastronomical searches.
Collapse
Affiliation(s)
- Nisha Job
- Department of Chemistry, School of Advanced Sciences , Vellore Institute of Technology , Vellore 632014 , Tamil Nadu , India
| | - Amir Karton
- School of Molecular Sciences , The University of Western Australia , Perth , Western Australia 6009 , Australia
| | - Krishnan Thirumoorthy
- Department of Chemistry, School of Advanced Sciences , Vellore Institute of Technology , Vellore 632014 , Tamil Nadu , India
| | - Andrew L Cooksy
- Department of Chemistry and Biochemistry , San Diego State University , San Diego , California 92182-1030 , United States
| | - Venkatesan S Thimmakondu
- Department of Chemistry and Biochemistry , San Diego State University , San Diego , California 92182-1030 , United States
| |
Collapse
|
10
|
Thirumoorthy K, Viji M, Pandey AP, Netke TG, Sekar B, Yadav G, Deshpande S, Thimmakondu VS. Many unknowns below or close to the experimentally known cumulene carbene – A case study of C9H2 isomers. Chem Phys 2019. [DOI: 10.1016/j.chemphys.2019.110496] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Thimmakondu VS, Ulusoy I, Wilson AK, Karton A. Theoretical Studies of Two Key Low-Lying Carbenes of C 5H 2 Missing in the Laboratory. J Phys Chem A 2019; 123:6618-6627. [PMID: 31269401 DOI: 10.1021/acs.jpca.9b06036] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The equilibrium geometries and spectroscopic properties of two key singlet carbenes, buta-1,3-diynylcarbene (6) and 2-methylenebicyclo[1.1.0]but-1(3)-en-4-ylidene (9), which have not been experimentally observed to date, are investigated using high-level coupled-cluster (CC) methods. The current theoretical study necessitates new experimental data on C5H2 isomers considering the relevance of these molecules to interstellar chemistry. Bent-pentadiynylidene (4) has been missing in the laboratory and the prime focus of our earlier theoretical work. The present theoretical study indicates that isomers 6 and 9 are also viable experimental targets. Apart from ethynylcyclopropenylidene (2), pentatetraenylidene (3), ethynylpropadienylidene (5), and 3-(didehydrovinylidene)cyclopropene (8), which are identified by Fourier transform microwave spectroscopy, the dipole moments of elusive 4, 6, and 9 are also nonzero (μ ≠ 0). The relative energies of these isomers, calculated at the CCSDT(Q)/CBS level of theory, with respect to linear triplet pentadiynylidene (1) reveal that they all lie within 25.1 kcal mol-1. Therefore, geometric, energetic, aromatic, and spectroscopic parameters are reported here, which may assist the efforts of molecular spectroscopists in the future. Anharmonic vibrational calculations on isomers 6 and 9 indicate that the former is loosely bound and would be challenging to be detected experimentally. Among the undetected carbenes, 9 may be considered as a potential target molecule considering its higher polarity and aromatic nature.
Collapse
Affiliation(s)
- Venkatesan S Thimmakondu
- Department of Chemistry and Biochemistry , San Diego State University , San Diego , California 92182-1030 , United States
| | - Inga Ulusoy
- Theoretical Chemistry, Institute of Physical Chemistry , Heidelberg University , Im Neuenheimer Feld 229 , 69120 Heidelberg , Germany.,Department of Chemistry , Michigan State University , East Lansing , Michigan 48824-1322 , United States
| | - Angela K Wilson
- Department of Chemistry , Michigan State University , East Lansing , Michigan 48824-1322 , United States
| | - Amir Karton
- School of Molecular Sciences , The University of Western Australia , Perth , Western Australia 6009 , Australia
| |
Collapse
|