Woźniak AP, Moszyński R. Modeling of High-Harmonic Generation in the C
60 Fullerene Using Ab Initio, DFT-Based, and Semiempirical Methods.
J Phys Chem A 2024;
128:2683-2702. [PMID:
38534023 PMCID:
PMC11017253 DOI:
10.1021/acs.jpca.3c07865]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/04/2024] [Accepted: 03/13/2024] [Indexed: 03/28/2024]
Abstract
We report calculations of the high-harmonic generation spectra of the C60 fullerene molecule carried out by employing a diverse set of real-time time-dependent quantum chemical methods. All methodologies involve expanding the propagated electronic wave function in bases consisting of the ground and singly excited time-independent eigenstates obtained through the solution of the corresponding linear-response equations. We identify the correlation and exchange effect in the spectra by comparing the results from methods relying on the Hartree-Fock reference determinant with those obtained using approaches based on the density functional theory with different exchange-correlation functionals. The effect of the full random-phase approximation treatment of the excited electronic states is also analyzed and compared with the configuration interaction singles and the Tamm-Dancoff approximation. We also showcase the fact that the real-time extension of the semiempirical method INDO/S can be effectively applied for an approximate description of laser-driven dynamics in large systems.
Collapse