1
|
Sardar S. An Exhaustive Quantum-Classical Study of C 6F 6+ Using the Newly Formulated Parallel TDDVR Method. J Phys Chem A 2024; 128:5777-5795. [PMID: 38979982 DOI: 10.1021/acs.jpca.4c02108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
We recently implemented our parallelized quantum-classical dynamical approach, known as the Time-Dependent Discrete Variable Representation (TDDVR) method, which is applied to the spectroscopically important hexafluorobenzene (HFBz) radical cation, where several conical intersections exist in their seven lowest excited electronic states (S11B2u, S21E1g, S31B1u, S41E1u, and S51A2u) considering degeneracy among potential energy surfaces (PESs), to demonstrate their various dynamical aspects. This new parallel version shows almost linear scalability with increasing number of computing processors. To get photoelectron (PE) spectra, Mass-Analyzed Threshold Ionization (MATI) spectra, population dynamics, and many other dynamical observables, the first-principles dynamics is applied at the state-of-the-art level to the corresponding Hamiltonian, where the Jahn-Teller (JT) and pseudo-Jahn-Teller (PJT) type interactions are involved in those coupled seven electronic states. The quantum-classical method is used to thoroughly analyze the effects of these couplings on the nuclear dynamics of the involved electronic states, and the findings are compared with those observables obtained from experiments. Intrinsic dynamical properties are explained using the reduced densities of the wave packet (WP) in a coupled electronic manifold. The PE and MATI spectra of HFBz computed using TDDVR are found to be in good agreement with earlier experimental data and other theoretically simulated spectra.
Collapse
Affiliation(s)
- Subhankar Sardar
- Department of Chemistry, Bhatter College, Dantan, P.O. Dantan, Paschim Medinipur, Pin 721426, India
| |
Collapse
|
2
|
Zobel JP, Heindl M, Plasser F, Mai S, González L. Surface Hopping Dynamics on Vibronic Coupling Models. Acc Chem Res 2021; 54:3760-3771. [PMID: 34570472 PMCID: PMC8529708 DOI: 10.1021/acs.accounts.1c00485] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The simulation of photoinduced non-adiabatic dynamics is of great
relevance in many scientific disciplines, ranging from physics and
materials science to chemistry and biology. Upon light irradiation,
different relaxation processes take place in which electronic and
nuclear motion are intimately coupled. These are best described by
the time-dependent molecular Schrödinger equation, but its
solution poses fundamental practical challenges to contemporary theoretical
chemistry. Two widely used and complementary approaches to this problem
are multiconfigurational time-dependent Hartree (MCTDH) and trajectory
surface hopping (SH). MCTDH is an accurate fully quantum-mechanical
technique but often is feasible only in reduced dimensionality, in
combination with approximate vibronic coupling (VC) Hamiltonians,
or both (i.e., reduced-dimensional VC potentials). In contrast, SH
is a quantum–classical technique that neglects most nuclear
quantum effects but allows nuclear dynamics in full dimensionality
by calculating potential energy surfaces on the fly. If nuclear quantum
effects do not play a central role and a linear VC (LVC) Hamiltonian
is appropriate—e.g., for stiff molecules that generally keep
their conformation in the excited state—then it seems advantageous
to combine the efficient LVC and SH techniques. In this Account, we
describe how surface hopping based on an LVC Hamiltonian (SH/LVC)—as
recently implemented in the SHARC surface hopping package—can
provide an economical and automated approach to simulate non-adiabatic
dynamics. First, we illustrate the potential of SH/LVC in a number
of showcases, including intersystem crossing in SO2, intra-Rydberg
dynamics in acetone, and several photophysical studies on large transition-metal
complexes, which would be much more demanding or impossible to perform
with other methods. While all of the applications provide very useful
insights into light-induced phenomena, they also hint at difficulties
faced by the SH/LVC methodology that need to be addressed in the future.
Second, we contend that the SH/LVC approach can be useful to benchmark
SH itself. By the use of the same (LVC) potentials as MCTDH calculations
have employed for decades and by relying on the efficiency of SH/LVC,
it is possible to directly compare multiple SH test calculations with
a MCTDH reference and ponder the accuracy of various correction algorithms
behind the SH methodology, such as decoherence corrections or momentum
rescaling schemes. Third, we demonstrate how the efficiency of SH/LVC
can also be exploited to identify essential nuclear and electronic
degrees of freedom to be employed in more accurate MCTDH calculations.
Lastly, we show that SH/LVC is able to advance the development of
SH protocols that can describe nuclear dynamics including explicit
laser fields—a very challenging endeavor for trajectory-based
schemes. To end, this Account compiles the typical costs of contemporary
SH simulations, evidencing the great advantages of using parametrized
potentials. The LVC model is a sleeping beauty that, kissed by SH,
is fueling the field of excited-state molecular dynamics. We hope
that this Account will stimulate future research in this direction,
leveraging the advantages of the SH/VC schemes to larger extents and
extending their applicability to uncharted territories.
Collapse
Affiliation(s)
- J. Patrick Zobel
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währingerstr. 19, 1090 Vienna, Austria
| | - Moritz Heindl
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währingerstr. 19, 1090 Vienna, Austria
| | - Felix Plasser
- Department of Chemistry, Loughborough University, Loughborough LE11 3TU, United Kingdom
| | - Sebastian Mai
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währingerstr. 19, 1090 Vienna, Austria
| | - Leticia González
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währingerstr. 19, 1090 Vienna, Austria
- Vienna Research Platform on Accelerating Photoreaction Discovery, University of Vienna, Währingerstr. 19, 1090 Vienna, Austria
| |
Collapse
|
3
|
Wong ZC, Ungur L. Exploring vibronic coupling in the benzene radical cation and anion with different levels of the GW approximation. Phys Chem Chem Phys 2021; 23:19054-19070. [PMID: 34612443 DOI: 10.1039/d1cp02795f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The linear vibronic coupling constants of the benzene radical cation and anion have been obtained with different levels of the GW approximation, including G0W0, eigenvalue self-consistent GW, and quasiparticle self-consistent GW, as well as DFT with the following exchange-correlation functionals: BLYP, B3LYP, CAM-B3LYP, tuned CAM-B3LYP, and an IP-tuned CAM-B3LYP functional. The vibronic coupling constants were calculated numerically using the gradients of the eigenvalues of the degenerate HOMOs and LUMOs of the neutral benzene molecule for DFT, while the numerical gradients of the quasiparticle energies were used in the case of GW. The results were evaluated against those of high level wave function methods in the literature, and the approximate self-consistent GW methods and G0W0 with long-range corrected functionals were found to yield the best results on the whole.
Collapse
Affiliation(s)
- Zi Cheng Wong
- Department of Chemistry, National University of Singapore, Block S8 Level 3, 3 Science Drive 3, 117543, Singapore.
| | | |
Collapse
|
4
|
Zhang C, Augenbraun BL, Lasner ZD, Vilas NB, Doyle JM, Cheng L. Accurate prediction and measurement of vibronic branching ratios for laser cooling linear polyatomic molecules. J Chem Phys 2021; 155:091101. [PMID: 34496585 DOI: 10.1063/5.0063611] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We report a generally applicable computational and experimental approach to determine vibronic branching ratios in linear polyatomic molecules to the 10-5 level, including for nominally symmetry-forbidden transitions. These methods are demonstrated in CaOH and YbOH, showing approximately two orders of magnitude improved sensitivity compared with the previous state of the art. Knowledge of branching ratios at this level is needed for the successful deep laser cooling of a broad range of molecular species.
Collapse
Affiliation(s)
- Chaoqun Zhang
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | - Zack D Lasner
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Nathaniel B Vilas
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - John M Doyle
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Lan Cheng
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
5
|
A comparative multi-state multi-dimensional quantum-classical dynamics on compact polycyclic aromatic hydrocarbons (CPAHs) by parallel TDDVR method. COMPUT THEOR CHEM 2020. [DOI: 10.1016/j.comptc.2020.113032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
6
|
Epshtein M, Scutelnic V, Yang Z, Xue T, Vidal ML, Krylov AI, Coriani S, Leone SR. Table-Top X-ray Spectroscopy of Benzene Radical Cation. J Phys Chem A 2020; 124:9524-9531. [PMID: 33107734 DOI: 10.1021/acs.jpca.0c08736] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ultrafast table-top X-ray spectroscopy at the carbon K-edge is used to measure the X-ray spectral features of benzene radical cations (Bz+). The ground state of the cation is prepared selectively by two-photon ionization of neutral benzene, and the X-ray spectra are probed at early times after the ionization by transient absorption using X-rays produced by high harmonic generation (HHG). Bz+ is well-known to undergo Jahn-Teller distortion, leading to a lower symmetry and splitting of the π orbitals. Comparison of the X-ray absorption spectra of the neutral and the cation reveals a splitting of the two degenerate π* orbitals as well as an appearance of a new peak due to excitation to the partially occupied π-subshell. The π* orbital splitting of the cation, elucidated on the basis of high-level calculations in a companion theoretical paper [Vidal et al. J. Phys. Chem. A. http://dx.doi.org/10.1021/acs.jpca.0c08732], is discovered to be due to both the symmetry distortion and even more dominant spin coupling of the unpaired electron in the partially vacant π orbital (from ionization) with the unpaired electrons resulting from the transition from the 1sC core orbital to the fully vacant π* orbitals.
Collapse
Affiliation(s)
- Michael Epshtein
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Valeriu Scutelnic
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Zheyue Yang
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Tian Xue
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Marta L Vidal
- DTU Chemistry - Department of Chemistry, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark
| | - Anna I Krylov
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Sonia Coriani
- DTU Chemistry - Department of Chemistry, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark
| | - Stephen R Leone
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Department of Physics, University of California, Berkeley, California 94720, United States
| |
Collapse
|
7
|
Vidal ML, Epshtein M, Scutelnic V, Yang Z, Xue T, Leone SR, Krylov AI, Coriani S. Interplay of Open-Shell Spin-Coupling and Jahn-Teller Distortion in Benzene Radical Cation Probed by X-ray Spectroscopy. J Phys Chem A 2020; 124:9532-9541. [PMID: 33103904 DOI: 10.1021/acs.jpca.0c08732] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We report a theoretical investigation and elucidation of the X-ray absorption spectra of neutral benzene and of the benzene cation. The generation of the cation by multiphoton ultraviolet (UV) ionization and the measurement of the carbon K-edge spectra of both species using a table-top high-harmonic generation source are described in the companion experimental paper [Epshtein, M.; et al. J. Phys. Chem. A http://dx.doi.org/10.1021/acs.jpca.0c08736]. We show that the 1sC → π transition serves as a sensitive signature of the transient cation formation, as it occurs outside of the spectral window of the parent neutral species. Moreover, the presence of the unpaired (spectator) electron in the π-subshell of the cation and the high symmetry of the system result in significant differences relative to neutral benzene in the spectral features associated with the 1sC → π* transitions. High-level calculations using equation-of-motion coupled-cluster theory provide the interpretation of the experimental spectra and insight into the electronic structure of benzene and its cation. The prominent split structure of the 1sC → π* band of the cation is attributed to the interplay between the coupling of the core → π* excitation with the unpaired electron in the π-subshell and the Jahn-Teller distortion. The calculations attribute most of the splitting (∼1-1.2 eV) to the spin coupling, which is visible already at the Franck-Condon structure, and we estimate the additional splitting due to structural relaxation to be around ∼0.1-0.2 eV. These results suggest that X-ray absorption with increased resolution might be able to disentangle electronic and structural aspects of the Jahn-Teller effect in the benzene cation.
Collapse
Affiliation(s)
- Marta L Vidal
- DTU Chemistry - Department of Chemistry, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark
| | - Michael Epshtein
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Valeriu Scutelnic
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Zheyue Yang
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Tian Xue
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Stephen R Leone
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Department of Physics, University of California, Berkeley, California 94720, United States
| | - Anna I Krylov
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Sonia Coriani
- DTU Chemistry - Department of Chemistry, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark
| |
Collapse
|
8
|
Beregovaya IV, Andreev RV, Shchegoleva LN. Pseudorotation of the Benzene Radical Cation Associated with HCN or CH3CN Molecules. J STRUCT CHEM+ 2019. [DOI: 10.1134/s0022476619100020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Goswami S, Kopec S, Köppel H. Vibronic Coupling and Excitation Transfer in Hydrogen-Bonded Molecular Dimers: A Quantum Dynamical Analysis. J Phys Chem A 2019; 123:5491-5503. [DOI: 10.1021/acs.jpca.9b04903] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sugata Goswami
- Physikalisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 229, D-69120 Heidelberg, Germany
| | - Sabine Kopec
- Physikalisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 229, D-69120 Heidelberg, Germany
| | - Horst Köppel
- Physikalisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 229, D-69120 Heidelberg, Germany
| |
Collapse
|