1
|
Gelin MF, Chen L, Domcke W. Equation-of-Motion Methods for the Calculation of Femtosecond Time-Resolved 4-Wave-Mixing and N-Wave-Mixing Signals. Chem Rev 2022; 122:17339-17396. [PMID: 36278801 DOI: 10.1021/acs.chemrev.2c00329] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Femtosecond nonlinear spectroscopy is the main tool for the time-resolved detection of photophysical and photochemical processes. Since most systems of chemical interest are rather complex, theoretical support is indispensable for the extraction of the intrinsic system dynamics from the detected spectroscopic responses. There exist two alternative theoretical formalisms for the calculation of spectroscopic signals, the nonlinear response-function (NRF) approach and the spectroscopic equation-of-motion (EOM) approach. In the NRF formalism, the system-field interaction is assumed to be sufficiently weak and is treated in lowest-order perturbation theory for each laser pulse interacting with the sample. The conceptual alternative to the NRF method is the extraction of the spectroscopic signals from the solutions of quantum mechanical, semiclassical, or quasiclassical EOMs which govern the time evolution of the material system interacting with the radiation field of the laser pulses. The NRF formalism and its applications to a broad range of material systems and spectroscopic signals have been comprehensively reviewed in the literature. This article provides a detailed review of the suite of EOM methods, including applications to 4-wave-mixing and N-wave-mixing signals detected with weak or strong fields. Under certain circumstances, the spectroscopic EOM methods may be more efficient than the NRF method for the computation of various nonlinear spectroscopic signals.
Collapse
Affiliation(s)
- Maxim F Gelin
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Lipeng Chen
- Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Strasse 38, D-01187 Dresden, Germany
| | - Wolfgang Domcke
- Department of Chemistry, Technical University of Munich, D-85747 Garching,Germany
| |
Collapse
|
2
|
Heindl M, González L. Taming Disulfide Bonds with Laser Fields. Nonadiabatic Surface-Hopping Simulations in a Ruthenium Complex. J Phys Chem Lett 2022; 13:1894-1900. [PMID: 35175761 PMCID: PMC8900122 DOI: 10.1021/acs.jpclett.1c04143] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Laser control of chemical reactions is a challenging field of research. In particular, the theoretical description of coupled electronic and nuclear motion in the presence of laser fields is not a trivial task and simulations are mostly restricted to small systems or molecules treated within reduced dimensionality. Here, we demonstrate how the excited state dynamics of [Ru(S-Sbpy)(bpy)2]2+ can be controlled using explicit laser fields in the context of fewest-switches surface hopping. In particular, the transient properties along the excited state dynamics leading to population of the T1 minimum energy structure are exploited to define simple laser fields capable of slowing and even completely stopping the onset of S-S bond dissociation. The use of a linear vibronic coupling model to parametrize the potential energy surfaces showcases the strength of the surface-hopping methodology to study systems including explicit laser fields using many nuclear degrees of freedom and a large amount of close-lying electronic excited states.
Collapse
|
3
|
Heindl M, González L. Validating fewest-switches surface hopping in the presence of laser fields. J Chem Phys 2021; 154:144102. [PMID: 33858152 DOI: 10.1063/5.0044807] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The capability of fewest-switches surface hopping (FSSH) to describe non-adiabatic dynamics under explicit excitation with external fields is evaluated. Different FSSH parameters are benchmarked against multi-configurational time dependent Hartree (MCTDH) reference calculations using SO2 and 2-thiocytosine as model, yet realistic, molecular systems. Qualitatively, FSSH is able to reproduce the trends in the MCTDH dynamics with (also without) an explicit external field; however, no set of FSSH parameters is ideal. The adequate treatment of the overcoherence in FSSH is revealed as the driving factor to improve the description of the excitation process with respect to the MCTDH reference. Here, two corrections were tested: the augmented-FSSH (AFSSH) correction and the energy-based decoherence correction. A dependence on the employed basis is detected in AFSSH, performing better when spin-orbit and external laser field couplings are treated as off-diagonal elements instead of projecting them onto the diagonal of the Hamilton operator. In the presence of an electric field, the excited state dynamics was found to depend strongly on the vector used to rescale the kinetic energy along after a transition between surfaces. For SO2, recurrence of the excited wave packet throughout the duration of the applied laser pulse is observed for laser pulses (>100 fs), resulting in additional interferences missed by FSSH and only visible in variational multi-configurational Gaussian when utilizing a large number of Gaussian basis functions. This feature vanishes when going toward larger molecules, such as 2-thiocytosine, where this effect is barely visible in a laser pulse 200 fs long.
Collapse
Affiliation(s)
- Moritz Heindl
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währingerstr. 17, 1090 Vienna, Austria
| | - Leticia González
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währingerstr. 17, 1090 Vienna, Austria
| |
Collapse
|
4
|
Pieroni C, Marsili E, Lauvergnat D, Agostini F. Relaxation dynamics through a conical intersection: Quantum and quantum-classical studies. J Chem Phys 2021; 154:034104. [PMID: 33499611 DOI: 10.1063/5.0036726] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
We study the relaxation process through a conical intersection of a photo-excited retinal chromophore model. The analysis is based on a two-electronic-state two-dimensional Hamiltonian developed by Hahn and Stock [J. Phys. Chem. B 104 1146 (2000)] to reproduce, with a minimal model, the main features of the 11-cis to all-trans isomerization of the retinal of rhodopsin. In particular, we focus on the performance of various trajectory-based schemes to nonadiabatic dynamics, and we compare quantum-classical results to the numerically exact quantum vibronic wavepacket dynamics. The purpose of this work is to investigate, by analyzing electronic and nuclear observables, how the sampling of initial conditions for the trajectories affects the subsequent dynamics.
Collapse
Affiliation(s)
- Carlotta Pieroni
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR8000, 91405 Orsay, France
| | - Emanuele Marsili
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | - David Lauvergnat
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR8000, 91405 Orsay, France
| | - Federica Agostini
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR8000, 91405 Orsay, France
| |
Collapse
|
5
|
Norouzi P, Ghiasi R. Theoretical understanding the effects of external electric field on the hydrolysis of anticancer drug titanocene dichloride. Mol Phys 2020. [DOI: 10.1080/00268976.2020.1781272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Parva Norouzi
- Department of Chemistry, Faculty of Basic Science, Arak Branch, Islamic Azad University, Arak, Iran
| | - Reza Ghiasi
- Department of Chemistry, Faculty of Basic Science, East Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
6
|
Tran T, Jenkins AJ, Worth GA, Robb MA. The quantum-Ehrenfest method with the inclusion of an IR pulse: Application to electron dynamics of the allene radical cation. J Chem Phys 2020; 153:031102. [PMID: 32716173 DOI: 10.1063/5.0015937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We describe the implementation of a laser control pulse in the quantum-Ehrenfest method, a molecular quantum dynamics method that solves the time-dependent Schrödinger equation for both electrons and nuclei. The oscillating electric field-dipole interaction is incorporated directly in the one-electron Hamiltonian of the electronic structure part of the algorithm. We then use the coupled electron-nuclear dynamics of the π-system in the allene radical cation (•CH2=C=CH2)+ as a simple model of a pump-control experiment. We start (pump) with a two-state superposition of two cationic states. The resulting electron dynamics corresponds to the rapid oscillation of the unpaired electron between the two terminal methylenes. This electron dynamics is, in turn, coupled to the torsional motion of the terminal methylenes. There is a conical intersection at 90° twist, where the electron dynamics collapses because the adiabatic states become degenerate. After passing the conical intersection, the electron dynamics revives. The IR pulse (control) in our simulations is timed to have its maximum at the conical intersection. Our simulations show that the effect of the (control) pulse is to change the electron dynamics at the conical intersection and, as a consequence, the concomitant nuclear dynamics, which is dominated by the change in the torsional angle.
Collapse
Affiliation(s)
- Thierry Tran
- Department of Chemistry, University College London, 20, Gordon St., WC1H 0AJ London, United Kingdom
| | - Andrew J Jenkins
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | - Graham A Worth
- Department of Chemistry, University College London, 20, Gordon St., WC1H 0AJ London, United Kingdom
| | - Michael A Robb
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, 80 Wood Lane, W12 0BZ London, United Kingdom
| |
Collapse
|
7
|
Eng J, Penfold TJ. Understanding and Designing Thermally Activated Delayed Fluorescence Emitters: Beyond the Energy Gap Approximation. CHEM REC 2020; 20:831-856. [PMID: 32267093 DOI: 10.1002/tcr.202000013] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 03/13/2020] [Indexed: 11/08/2022]
Abstract
In this article recent progress in the development of molecules exhibiting Thermally Activated Delayed Fluorescence (TADF) is discussed with a particular focus upon their application as emitters in highly efficient organic light emitting diodes (OLEDs). The key aspects controlling the desirable functional properties, e. g. fast intersystem crossing, high radiative rate and unity quantum yield, are introduced with a particular focus upon the competition between the key requirements needed to achieve high performance OLEDs. The design rules required for organic and metal organic materials are discussed, and the correlation between them outlined. Recent progress towards understanding the influence of the interaction between a molecule and its environment are explained as is the role of the mechanism for excited state formation in OLEDs. Finally, all of these aspects are combined to discuss the ability to implement high level design rules for achieving higher quality materials for commercial applications. This article highlights the significant progress that has been made in recent years, but also outlines the significant challenges which persist to achieve a full understanding of the TADF mechanism and improve the stability and performance of these materials.
Collapse
Affiliation(s)
- Julien Eng
- Chemistry, School of Natural and Environmental Sciences, Newcastle University, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Thomas J Penfold
- Chemistry, School of Natural and Environmental Sciences, Newcastle University, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| |
Collapse
|
8
|
Northey T, Norell J, Fouda AEA, Besley NA, Odelius M, Penfold TJ. Ultrafast nonadiabatic dynamics probed by nitrogen K-edge absorption spectroscopy. Phys Chem Chem Phys 2020; 22:2667-2676. [DOI: 10.1039/c9cp03019k] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Quantum dynamics simulations are used to simulate the ultrafast X-ray Absorption Near-Edge Structure (XANES) spectra of photoexcited pyrazine including two strongly coupled electronically excited states and four normal mode degrees of freedom.
Collapse
Affiliation(s)
- T. Northey
- Chemistry-School of Natural and Environmental Sciences
- Newcastle University
- Newcastle upon Tyne
- UK
| | - J. Norell
- Department of Physics
- Stockholm University
- AlbaNova University Center
- Stockholm
- Sweden
| | | | - N. A. Besley
- School of Chemistry
- University of Nottingham
- Nottingham
- UK
| | - M. Odelius
- Department of Physics
- Stockholm University
- AlbaNova University Center
- Stockholm
- Sweden
| | - T. J. Penfold
- Chemistry-School of Natural and Environmental Sciences
- Newcastle University
- Newcastle upon Tyne
- UK
| |
Collapse
|
9
|
Tsuru S, Vidal ML, Pápai M, Krylov AI, Møller KB, Coriani S. Time-resolved near-edge X-ray absorption fine structure of pyrazine from electronic structure and nuclear wave packet dynamics simulations. J Chem Phys 2019; 151:124114. [PMID: 31575192 DOI: 10.1063/1.5115154] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
As a demonstration of the analysis of the electronic structure and the nuclear dynamics from time-resolved near-edge X-ray absorption fine structure (TR-NEXAFS), we present the TR-NEXAFS spectra of pyrazine following the excitation to the 1B2u(ππ*) state. The spectra are calculated combining the frozen-core/core-valence separated equation-of-motion coupled cluster singles and doubles approach for the spectral signatures and the multiconfiguration time-dependent Hartree method for the wave packet propagation. The population decay from the 1B2u(ππ*) state to the 1B3u(nπ*) and 1Au(nπ*) states, followed by oscillatory flow of population between the 1B3u(nπ*) and 1Au(nπ*) states, is interpreted by means of visualization of the potential energy curves and the reduced nuclear densities. By examining the electronic structure of the three valence-excited states and the final core-excited states, we observe that the population dynamics is explicitly reflected in the TR-NEXAFS spectra, especially when the heteroatoms are selected as the X-ray absorption sites. This work illustrates the feasibility of extracting fine details of molecular photophysical processes from TR-NEXAFS spectra by using currently available theoretical methods.
Collapse
Affiliation(s)
- Shota Tsuru
- DTU Chemistry-Department of Chemistry, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Marta L Vidal
- DTU Chemistry-Department of Chemistry, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Mátyás Pápai
- DTU Chemistry-Department of Chemistry, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Anna I Krylov
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482, USA
| | - Klaus B Møller
- DTU Chemistry-Department of Chemistry, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Sonia Coriani
- DTU Chemistry-Department of Chemistry, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| |
Collapse
|
10
|
Pápai M, Rozgonyi T, Penfold TJ, Nielsen MM, Møller KB. Simulation of ultrafast excited-state dynamics and elastic x-ray scattering by quantum wavepacket dynamics. J Chem Phys 2019; 151:104307. [DOI: 10.1063/1.5115204] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
- Mátyás Pápai
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, DK-2800 Kongens Lyngby, Denmark
| | - Tamás Rozgonyi
- Wigner Research Centre for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest, Hungary
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, P.O. Box 286, H-1519 Budapest, Hungary
| | - Thomas J. Penfold
- Chemistry - School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Martin M. Nielsen
- Department of Physics, Technical University of Denmark, Fysikvej 307, DK-2800 Kongens Lyngby, Denmark
| | - Klaus B. Møller
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, DK-2800 Kongens Lyngby, Denmark
| |
Collapse
|