Priyadharsan RR, Timothy RA, Thomas JM, Jeyakumar TC, Rajaram R, Louis H. Investigating the structure, bonding, and energy decomposition analysis of group 10 transition metal carbonyls with substituted terminal germanium chalcogenides [M(CO)
3GeX] (M = Ni, Pd, and Pt; X = O, S, Se, and Te) complexes: insight from first-principles calculations.
J Mol Model 2023;
29:344. [PMID:
37847395 DOI:
10.1007/s00894-023-05745-8]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/02/2023] [Indexed: 10/18/2023]
Abstract
CONTEXT
This research focused on the theoretical investigation of transition metal carbonyls [M(CO)4] coordinated with terminal germanium chalcogenides complexes [M(CO)3GeX], where M represents Ni, Pd, and Pt and X represents O, S, Se, and Te labeled 1-15. While the notable complexes M(CO)4 (where M = Ni, Pd, Pt) numbered 1, 6, and 11 are of significance, substituting one of the CO ligands in 1, 6, and 11 with a GeX ligand (where X = O, S, Se, or Te) result in substituted complexes (2-5, 7-10, and 11-15). Substituting of the CO ligand slightly alters these bond angles. Specifically, the ∠CMC bond angles for [Ni] complexes range from 111.9° to 112.2°, for [Pd] complexes from 111.4° to 111.7°, and for [Pt] complexes from 112.4° to 112.8°. These findings indicate a minor deviation from the tetrahedral geometry due to the influence of the new GeX ligand. Similarly, there is a slight change in the geometry of the metal complexes, where the ∠GeMC angles for [Ni] complexes are between 106.7° and 106.9°, for [Pd] complexes between 107.2° and 107.5°, and for [Pt] complexes between 105.9° and 106.4°. Comparing among the substituted GeX complexes, those containing GeTe exhibit a higher natural bond orbital (NBO) contribution from the Ge atom compared to the M atom. Consequently, based on the above observations, it can be inferred that GeX acts as an effective sigma donor in contrast to carbonyl compounds. Results of energy decomposition analysis (EDA) for the M-CO bond in 1, 6, and 11 and for the M-GeX bond in the other [M(CO)3(GeX)] complexes where M = Ni, Pd and Pt. The percentage contribution of ΔEelstat and ΔEorb shows a relatively identical behavior for all ligands in case of each metal complexes.
METHODS
Density functional theory (DFT) calculations were conducted using the B3LYP/gen/6-31G*/LanL2DZ level of theory to examine transition metal carbonyls [M(CO)4] coordinated with terminal germanium chalcogenides complexes [M(CO)3GeX], where M represents Ni, Pd, and Pt, and X represents O, S, Se, and Te labeled 1-15 utilized through the use of Gaussian 09W and GaussView 6.0.16 software packages. Post-processing computational code such as multi-wave function was employed for results analysis and visualization.
Collapse